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Numerical energy conservation in Fokker–Planck problems requires the energy
moment of the Fokker–Planck equation to cancel exactly. However, standard dis-
cretization techniques not only do not observe this requirement (thus precluding exact
energy conservation), but they also demand very refined meshes to keep the energy
error under control. In this paper, a new difference scheme for multidimensional
Fokker–Planck problems that improves the numerical cancellation of the energy mo-
ment is proposed. Crucial to this new development is the reformulation of the friction
term in the Fokker–Planck collision operator using Maxwell stress tensor formalism.
As a result, the Fokker–Planck collision operator takes the form of a double diver-
gence operating on a tensor, which is suitable for particle and energy conservative
differencing. Numerical results show that the new discretization scheme improves
the cancellation of the energy moment integral over standard approaches by at least
an order of magnitude. c© 2000 Academic Press

Key Words:plasma simulation; conservative discretization; energy-conservative
Fokker–Planck.

1. INTRODUCTION

Plasma modeling in fusion devices generally falls into one of two categories: either the
plasma can be regarded as being in local thermal equilibrium (LTE), and a fluid treatment
is adequate; or the fluid treatment must be abandoned, either because the collision mean-
free-path is comparable to the dimension of the system (giving large Knudsen numbers) or
due to sources and/or sinks in velocity space that do not allow LTE to occur. The latter is the
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case, for instance, in mirror devices, where the loss cones (sinks) preclude the plasma from
achieving thermal equilibrium, and in inertial electrostatic confinement fusion systems,
where an ion source causes a non-Maxwellian plasma.

The analysis of non-local-thermal-equilibrium (NLTE) plasmas requires a kinetic treat-
ment, whose accuracy and reliability depends on an adequate description of the collisions
occurring in the system. In fusion plasmas, where small-angle Coulomb scattering is pre-
dominant due to a high mean particle energy, this description is provided by the Fokker–
Planck collision term. The Fokker–Planck collision operator presents important intrinsic
symmetries (such as the preservation of particles, momentum, and energy), and observes the
H-theorem, which states that the entropy of the system will increase in time, and the LTE
solution—if such equilibrium is allowed—is the Maxwell–Boltzmann distribution (thus
reverting to a fluid description in the LTE limit).

However, these properties may not hold in the numerical representation of the Fokker–
Planck collision operator. Chang and Cooper showed [1] that exact particle conservation
can be achieved numerically in problems with any geometry and dimensionality by a suit-
able discretization of the Fokker–Planck collision operator. In the same reference, they
proposed an interpolation technique—effective only in spherical geometry—that preserves
the positivity of the solution and favors the convergence to the LTE limit. Energy conser-
vation in one-dimensional Fokker–Planck problems was first addressed by Epperlein [2].
He showed that numerical energy conservation is conceptually and practically possible in
one-dimensional Fokker–Planck problems for any time step, provided that the energy mo-
ment of the Fokker–Planck collision operator cancels numerically. However, generalizing
Epperlein’s energy-conservative method for multiple dimensions in velocity space is non-
trivial because the implicit time integration requires inverting a dense, non-symmetric
Jacobian matrix.

Two steps are identified in the implementation of an implicit energy-conservative solver
for the multidimensional Fokker–Planck equation, namely, (1) develop a suitable difference
scheme to ensure the numerical cancellation of the energy moment of the Fokker–Planck
collision operator, and (2) deal efficiently with the dense, non-symmetric algebraic problem
that results from such formulation, with minimal storage and run-time requirements. The
latter requirement has been successfully accomplished by the authors in Ref. [3], using
multigrid-preconditioned Jacobian-free Newton–Krylov iterative methods. It is the objec-
tive of this paper to address the former for multidimensional geometries.

The paper is organized as follows. Section 2 deals with the theoretical background per-
taining to the Fokker–Planck collision operator. The particle and energy conservative dis-
cretization method is derived in Section 3. The scaling of the energy error is discussed
in Section 4. Section 5 presents some results to illustrate the performance and limitations
of the new discretization technique vs the standard second-order particle-conservative dis-
cretization of the Fokker–Planck collision operator.

2. THEORETICAL ISSUES OF ENERGY CONSERVATION

IN THE FOKKER–PLANCK COLLISION OPERATOR

The general form of the Boltzmann transport equation for a speciesα reads

∂ fα
∂t
+ v · ∂ fα

∂r
+ Fα

mα

· ∂ fα
∂v
=
∑
β

Lαβ( fα, fβ),
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where fα is the distribution function of the speciesα, Fα is the force,mα is the mass,Lαβ
represents the effects of the speciesβ on the speciesα via collisions, and the sum is over all
the species present in the system. In this equation (and in what follows),t is time,r is the
position vector, andv is the velocity vector. For a single species system in which Coulomb
collisions are dominant, the collision term in the transport equation will be given by the
Fokker–Planck collision operator, which in the Rosenbluth form [4] reads

Lαα = −0α ∂
∂v
·
[

fα
∂H( fα)

∂v
− 1

2

∂

∂v
·
(
∂2G( fα)

∂v∂v
fα

)]
. (1)

Here0α = 4πe4
αλ/m2

α, whereλ is the Coulomb logarithm, andeα,mα are the charge and
mass of the speciesα. As is clear from Eq. (1),Lαα operates only in velocity space. Hence,
for the purpose of studying the energy conservation issues of the Fokker–Planck collision
operator, the convection and field transport terms present in the most general form of the
Boltzmann transport equation can be ignored (equivalent to assuming that the plasma is
field-free and spatially homogeneous). This results in the following simplified Fokker–
Planck equation,

∂ f

∂t
= L( f ) = −0 ∂

∂v
·
[

f
∂H( f )

∂v
− 1

2

∂

∂v
·
(
∂2G( f )

∂v∂v
f

)]
= − ∂

∂v
· JFP, (2)

where the species subscript has been dropped for simplicity. In Eq. (2),JFP is the Fokker–
Planck flux, defined as

JFP = 0
[

f
∂H( f )

∂v
− 1

2

∂

∂v
·
(
∂2G( f )

∂v∂v
f

)]
which is formed by a friction term (proportional tof ) and a diffusion term (proportional to
∂ f/∂v). The friction and diffusion coefficients are expressed in terms ofH( f ) andG( f ),
respectively, defined by

∇2
v H = −8π f (3)

∇2
v G = H. (4)

These are called theRosenbluth potentials[4], due to the obvious similarity with electrostatic
potential theory.

Equation (2) can be shown [5] to satisfy important intrinsic symmetries such as particle,
momentum, and energy conservation, and preservation of the positivity of the solution. It
also satisfies the H-theorem, which implies that the Maxwell–Boltzmann distribution is the
solution in equilibrium. The preservation of these symmetries in the numerical approxima-
tion to the problem is essential to adequately simulate the physics. Particle conservation is
straightforward to prove by virtue of Gauss’ theorem,

∂N

∂t
=
∫
Ä∞

dv
∂ f

∂t
= −

∫
Ä∞

dv
∂

∂v
· JFP = −

∮
∂Ä∞

dS · JFP = 0 (5)

provided thatf,G, andH are regular at infinity. In this equation,Ä∞ represents the infinite
velocity domain, and∂Ä∞ is the boundary of that domain at infinity. The conservative
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discretization of the Fokker–Planck collision operator [1] results in a local particle balance
at every node, thus ensuring particle conservation numerically with the proper boundary
conditions. However, energy conservation is considerably more involved. It requires a global
balance in an infinite velocity domain,

∂E

∂t
=
∫
Ä∞

dv
v2

2

∂ f

∂t
=
∫
Ä∞

dv
v2

2
L( f ) = −

∫
Ä∞

dv
v2

2

∂

∂v
· JFP( f ) = 0. (6)

Energy conservation cannot be shown from Eqs. (2) and (6) directly unless the Rosenbluth
potentials are expressed as Poisson integrals (leading to the Landau formalism [5]). Calcu-
lating these integrals is computationally much more expensive than inverting the laplacian
operators in 2D. In fact, ifN is thetotal number of mesh points (equal to the total number
of unknowns), calculating the Rosenbluth’s potentials from the Poisson integral in a 2D
velocity space would requireO(N2) operations (O(N) operations per integral per mesh
point), whereas solving Poisson’s equation numerically would requireO(N3/2) with the
optimized successive over-relaxation method, and far less if preconditioned Krylov iterative
techniques are employed [6]. Therefore, the Fokker–Planck equation has to be re-cast so
that energy conservation can be demonstrated from the more efficient laplacian formulation
of the Rosenbluth potentials. This will be accomplished here by using an analogy of the
Maxwell stress tensor formalism in electromagnetic theory.

2.1. Reformulation of the Fokker–Planck Equation

The electrostatic analogy introduced by Rosenbluth suggests thatH can be regarded as
a potential,∂H/∂v as the corresponding electric field, and 2f as the charge density. Then,
we can write

∂H

∂v
f = − 1

8π

∂

∂v
·
[
∂H

∂v
∂H

∂v
− Ī

2

(
∂H

∂v

)2
]
= − ∂

∂v
· T̄ [H, H ], (7)

where Ī is the identity dyadic, and̄T [H, H ] is formally equivalent to the Maxwell stress
tensor [7]. This tensor is a symmetric, bilinear operator. Using it, Eq. (2) transforms into

∂ f

∂t
= 0 ∂

∂v
· ∂
∂v
·
[
T̄ [H, H ] + 1

2

∂2G( f )

∂v∂v
f

]
. (8)

Note that f no longer appears in the friction term of the Fokker–Planck equation, which
is represented now by the divergence of the tensorT̄ [H, H ]. This new formulation of the
Fokker–Planck collision operator, developed to demonstrate energy conservation within the
Rosenbluth potentials formalism, is subsequently referred to as thetensor Fokker–Planck
formalism.

2.2. Energy Conservation in the Tensor Fokker–Planck Formalism

The rate of change of energy in an ensemble of particles distributed according tof in an
infinite velocity domainÄ∞ is given by

∂E

∂t
=
∫
Ä∞

dv
v2

2

∂ f

∂t
(9)
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which, after introducing Eq. (8) and integrating by parts once, reads as

∂E

∂t
= −

∫
Ä∞

dv
v2

2

∂

∂v
· JFP =

∫
Ä∞

dv v · JFP

= −0
{∫

Ä∞
dv v · ∂

∂v
· T̄ [H, H ] + 1

2

∫
Ä∞

dv v · ∂
∂v
·
[
∂2G( f )

∂v∂v
f

]}
. (10)

In what follows, the proportionality constant0 is set to one for simplicity. The boundary
integrals, which are zero at infinity, are omitted here. The second integral in Eq. (10) is
integrated again by parts to find, according to the definitions ofH andG,∫

Ä∞
dv v · ∂

∂v
·
[
∂2G( f )

∂v∂v
f

]
= −

∫
Ä∞

dv f∇2
v G( f ) = 1

8π

∫
Ä∞

dvH∇2
v H. (11)

At this point, the bilinear, symmetric operatorQ[H, H ] is defined as

Q[H, H ] = H∇2
v H

16π
= 1

16π

[
∂2

∂v2

(
H2

2

)
−
(
∂H

∂v

)2
]

(12)

leading to the following expression for the energy rate of change:

∂E

∂t
= −

∫
Ä∞

dv
[
v · ∂
∂v
· T̄ [H, H ] + Q[H, H ]

]
= 0. (13)

The rate of change of energy cancels because∫
Ä∞

dv v · ∂
∂v
· T̄ [H, H ] = 1

16π

∫
Ä∞

dv
(
∂H

∂v

)2

(14)

∫
Ä∞

dvQ[H, H ] = − 1

16π

∫
Ä∞

dv
(
∂H

∂v

)2

. (15)

The previous result has been obtained for an infinite velocity domainÄ∞, but it also
holds for finite domainsÄ, limited by a surface boundary∂Ä, provided thatf is absolutely
contained inÄ. This is proven next. For a finite domain, the integrations in Eqs. (14) and
(15) yield∫

Ä

dv v · ∂
∂v
· T̄ [H, H ] = 1

16π

∫
Ä

dv
(
∂H

∂v

)2

+ 1

8π

∮
∂Ä

dS

·
[
∂H

∂v

(
v · ∂H

∂v

)
− v

2

(
∂H

∂v

)2
]

(16)

∫
Ä

dvQ[H, H ] = − 1

16π

∫
Ä

dv
(
∂H

∂v

)2

+ 1

16π

∮
∂Ä

dS · ∂H

∂v
H (17)

and the corresponding energy rate of change reads

∂E

∂t
∝
∮
∂Ä

dS · 1
2

v
(
∂H

∂v

)2

︸ ︷︷ ︸
I1

−
∮
∂Ä

dS · ∂H

∂v

(
v · ∂H

∂v
+ H

2

)
︸ ︷︷ ︸

I2

. (18)
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Using Gauss’ integral theorem, the integralI2 is transformed to a volume integral over
the volume in velocity space external toÄ (represented byÄext), also limited by∂Ä and
extending to infinity (i.e.,Ä∪Äext=Ä∞). Then, Eq. (18) transforms into

∂E

∂t
∝
∮
∂Ä

dS · 1
2

v
(
∂H

∂v

)2

︸ ︷︷ ︸
I1

+
∫
Äext

dv
∂

∂v
·
[
∂H

∂v

(
v · ∂H

∂v
+ H

2

)]
︸ ︷︷ ︸

I2

. (19)

Note that the sign in the integralI2 has changed becausedS=−dSext. As f is zero outside
Ä, H is harmonic inÄext, andI2 simplifies to

I2 =
∫
Äext

dv
∂

∂v
·
[
∂H

∂v

(
v · ∂H

∂v
+ H

2

)]
=
∫
Äext

dv

[
3

2

(
∂H

∂v

)2

+ ∂H

∂v
· ∂

2H

∂v∂v
· v
]

= 1

2

∫
Äext

dv
∂

∂v
·
[

v
(
∂H

∂v

)2
]
= −

∮
∂Ä

dS · 1
2

v
(
∂H

∂v

)2

.

Therefore

∂E

∂t
∝
∮
∂Ä

dS · 1
2

v
(
∂H

∂v

)2

−
∮
∂Ä

dS · 1
2

v
(
∂H

∂v

)2

= 0. (20)

Hence, the energy moment also cancels in finite domains provided thatf is absolutely
confined in them. The importance of this result stems from the fact that only finite domains
can be considered in numerical problems. However, exact numerical cancellation will not
occur due to numerical errors in the boundary integrals above. This is in fact the weakness
of any energy-conservative discretization technique in Fokker–Planck problems. A detailed
analysis of the errors in this cancellation is presented in Section 4.

3. DISCRETIZATION OF THE FOKKER–PLANCK COLLISION OPERATOR

The simplified transport equation in Eq. (2) represents the time evolution of an ensemble
of particles in velocity space. Then, in the numerical description of the problem, two distinct
steps are identified, namely, the discretization in time and the discretization in velocity space.
Both steps are crucial for the adequate preservation of particles and energy—as well as the
accuracy and consistency of the numerical solution. In this paper we deal mainly with the
velocity space aspect of the problem. The details of the time integration of the non-linear
equation, and the solution algorithm used on the resulting linear system, are described in
detail in Ref. [3].

For the energy-conservative time discretization to hold when the Fokker–Planck collision
operatorL( f ) is discretized in velocity space, the identity

∂E

∂t
=
∫
Ä∞

dv
v2

2

∂ f

∂t
= −0

∫
Ä∞

dv
[
v · ∂
∂v
· T̄ [H, H ] + Q[H, H ]

]
= 0 (21)

must be satisfied numerically. The next sections describe a systematic way of designing
a discretization technique that accomplishes this goal. The process, which follows the
integration order followed in obtaining Eq. (13) (reproduced in Eq. (21)), renders, as a
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FIG. 1. Diagram of the local cylindrical velocity coordinate system (vr , vp) considered in this work. Cylin-
drical symmetry is assumed. The spherical radius vectorr is included for reference.

by-product, the required numerical representation of the subordinate problems forH and
G, which will be somewhat different from the traditional treatment.

3.1. Definition of the Computational Velocity Domain

So far, the discussion has been independent of a particular geometry and/or dimensionality
in velocity space. To focus the discussion that follows, a 2D cylindrical velocity space with
angular symmetry is adopted. This space is spanned by (vr , vp), wherevr is the cylindrical
z-axis, andvp is the cylindricalr -axis (Fig. 1), andvr ∈ [0, vlimit ]; vp ∈ [0, vlimit ]. Here,vlimit

is typically set to several times the characteristics velocity of the problem,v0.
The domain is discretized with an integer mesh and a half mesh (Fig. 2). Theinteger

mesh is defined usingNr (+1) nodes in thevr axis, andNp(+1) nodes in thevp axis, with
the constraints

vr,1 = 0, vr,Nr = vlimit

vp,1 = 0, vp,Np = vlimit .

Each velocity node is characterized by a pair(vr,i , vp, j ), with i = 1, . . . , Nr (+1), and
j = 1, . . . , Np(+1). The additional (i = Nr + 1, j ) and(i, j = Np+ 1) nodes at the bound-
aries will serve a double purpose: (1) they will be used to impose the far-field boundary
conditions for the Rosenbluth potentials, and (2) they will allow an accurate determina-
tion of the friction and diffusion coefficients of the Fokker–Planck collision operator at the

FIG. 2. Diagram of the 9-point stencil in velocity space employed in the discretization of the Fokker–Planck
collision operator.
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outer boundaries. These coefficients are defined as first and second order derivatives of the
Rosenbluth potentials, and hence require at least two neighboring nodes to be estimated
accurately. This will turn out to be essential, because errors at the boundaries will ultimately
lead to errors in the conservation of energy.

In addition to the integer mesh, ahalf mesh is introduced (Fig. 2) to assist in the devel-
opment of an energy-conservative discretization, defined as

vr,i+ 1
2
= vr,i+1+ vr,i

2
; i = 1, . . . , Nr (22)

vp, j+ 1
2
= vp, j+1+ vp, j

2
; j = 1, . . . , Np. (23)

The velocity increments in the integer and half mesh (which will be non-uniform in
general) are obtained as

1vr,i = vr,i+ 1
2
− vr,i− 1

2
; i = 1, . . . , Nr (24)

1vp, j = vp, j+ 1
2
− vp, j− 1

2
; j = 1, . . . , Np (25)

1vr,i+ 1
2
= vr,i+1− vr,i ; i = 1, . . . , Nr (26)

1vp, j+ 1
2
= vp, j+1− vp, j ; j = 1, . . . , Np. (27)

Finally, it will be useful to define an additional mesh in the perpendicular direction,

v∗p, j =
vp, j+ 1

2
+ vp, j− 1

2

2
; v∗p,1 = 0; j = 2, . . . , Np (28)

andv∗p,1= 0. Note that, for a uniform mesh,v∗p, j = vp, j .

3.2. Boundary Conditions in Velocity Space

The computational domain defined in the previous section is limited by four distinct
boundaries, namely,vr = 0, vp= 0 (inner boundaries), andvr = vlimit, vp= vlimit (outer
boundaries). The system is assumed symmetric with respect to both inner boundaries;
hence

∂

∂vp

∣∣∣∣
vp=0

= 0

∂

∂vr

∣∣∣∣
vr=0

= 0.

Regarding the outer boundaries, the conditions are different for the main Fokker–Planck
problem (f ) and the two subordinate Poisson problems (H,G). These are described next.

3.2.1. Boundary conditions for the Rosenbluth potentials.The approximate numerical
cancellation of the boundary integrals in Eq. (20) requires thatH (andG, by consistency)
be determined in the finite domainÄ and at the boundaryas if they actually extended to
infinity. This is accomplished by integrating the Rosenbluth potentials with the so-called
far-field boundary conditions[7], obtained by calculatingH andG at the nodes of the outer
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boundaries from the integral definition of the Rosenbluth potentials, based on the Green’s
function formalism for an infinite domain:

H(v) = 2
∫
Ä∞

dv′
f (v′)
|v− v′| ; G(v) =

∫
Ä∞

dv′ f (v′)|v− v′|. (29)

For the particular case of a cylindrical coordinate system, these integrals can be expanded
in terms of complete elliptic integrals of the first kindK (k) and second kindE(k) as

H(vr , vp) = 8
∫ vlimit

0
v′p dv′p

∫ vlimit

0
dv′r

f (v′r , v
′
p)K [k(vr , vp; v′r , v′p)]√

(vp + v′p)2+ (vr − v′r )2

G(vr , vp) = 4
∫ vlimit

0
v′p dv′p

∫ vlimit

0
dv′r f (v′r , v

′
p)E[k(vr , vp; v′r , v′p)]

×
√
(vp + v′p)2+ (vr − v′r )2,

wherek(vr , vp; v′r , v′p)= 4vpv
′
p/
√
(vp+ v′p)2+ (vr − v′r )2. The functionsK (k) andE(k)

are calculated numerically with well-known polynomial approximations [8]. Note that the
computational complexity associated with the calculation of the far-field boundary con-
ditions isO(N3/2) (the computational complexity of the integrals isO(N), and there are
O(
√

N) boundary points).

3.2.2. Boundary conditions for the Fokker–Planck equation.The boundary conditions
at the outer boundaries in the Fokker–Planck problem are selected so that particles are
conserved exactly. This issue is discussed further in the next section.

3.3. Particle-Conservative Discretization of the Fokker–Planck Collision Operator

The first step in finding the discrete Fokker–Planck collision operator,3i, j ( fl ,m), from
L( f )=−(∂/∂v) · JFP is to discretize the divergence operator conservatively. Here,JFP is
the Fokker–Planck flux, given by

JFP = −0 ∂
∂v
·
[
T̄ [H, H ] + 1

2

∂2G( f )

∂v∂v
f

]
. (30)

In a cylindrical space with angular symmetry,JFP= Rup+ Zur (whereup= vp/vp is the
unit vector in thevp-direction, andur = vr /vr is the unit vector in thevr -direction). Then,
the divergence operator operating onJFP reads

∂

∂v
· JFP = 1

vp

∂

∂vp
(vpR)+ ∂Z

∂vr
. (31)

However, to avoid the singularity atvp= 0, the integral form of the divergence operator
will be used instead to discretize the divergence of the Fokker–Planck flux,∫

1Äi, j

dv
∂

∂v
· JFP =

∮
∂Äi, j

dS · JFP, (32)

wheredS is a vector normal to the surface and pointing outwards from the volume, and
1Äi, j is the cylindrical control volume associated with a velocity node (i, j ) (Fig. 3).
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FIG. 3. Correspondence between the discretization control volume and the physical volume in velocity space.
This is useful to define the volume elements (1Äi, j ) and the surface elements (1Si±1/2, j ,1Si, j±1/2), present in the
discretized equations.

Assuming this volume is sufficiently small, Eq. (32) can be approximated by the following
particle flux balance,

1Äi, j

[
∂

∂v
· JFP

]
i, j

= 1Si+ 1
2 , j

Zi+ 1
2 , j
−1Si− 1

2 , j
Zi− 1

2 , j

+1Si, j+ 1
2
Ri, j+ 1

2
−1Si, j− 1

2
Ri, j− 1

2
, (33)

where the1S’s are the areas of the boundaries of the volume element1Äi, j . Hence

−3i, j ( f ) =
[
∂

∂v
· JFP

]
i, j

=
1Si+ 1

2 , j
Zi+ 1

2 , j
−1Si− 1

2 , j
Zi− 1

2 , j

1Äi, j
+
1Si, j+ 1

2
Ri, j+ 1

2
−1Si, j− 1

2
Ri, j− 1

2

1Äi, j
. (34)

The appropriate expressions for1Si± 1
2 , j
,1Si, j± 1

2
, and1Äi, j will depend on the location

of the node (i, j ) in the mesh. In addition, the particle-conservative boundary conditions
must be enforced at the boundaries, which will result in one of the components of the flux
being zero. Details are given in Appendix A.

3.4. Energy-Conservative Discretization of the Fokker–Planck Collision Operator

The discretization in Eq. (34) will be the starting point for the development of the
energy-conservative discretization scheme. Such development will consist in tailoring the
discretization of the flux components,Ri, j± 1

2
and Zi± 1

2 , j
(not uniquely defined at this

point) adequately, by following the path indicated by the theoretical proof presented in
Subsection 2.2.

3.4.1. Numerical integration by parts of the energy moment.Before attempting the
discretization of the flux components, it is essential to show that the discretized Fokker–
Planck operator satisfies a numerical equivalent of the following integration by parts (over
which rests the theoretical proof of energy conservation, as shown in Eq. (10)):∫

dv
v2

2

∂

∂v
· JFP = −

∫
dv v · JFP. (35)
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Discretizing the energy moment integral as the particle moment integral (Eqs. (32) and
(33)), we find∫

dv
v2

2

∂

∂v
· JFP

≈
∑
i, j

1Äi, j
v2

i, j

2

[
∂

∂v
· JFP

]
i, j

=
∑
i, j

1Äi, j
v2

i, j

2

[
1Si+ 1

2 , j
Zi+ 1

2 , j
−1Si− 1

2 , j
Zi− 1

2 , j

1Äi, j
+
1Si, j+ 1

2
Ri, j+ 1

2
−1Si, j− 1

2
Ri, j− 1

2

1Äi, j

]

=
∑
i, j

v2
i, j

2

[
1Si+ 1

2 , j
Zi+ 1

2 , j
−1Si− 1

2 , j
Zi− 1

2 , j
+1Si, j+ 1

2
Ri, j+ 1

2
−1Si, j− 1

2
Ri, j− 1

2

]
.

Factoring out the (1S R) and (1S Z) terms (called “telescoping” the sum), results in

∑
i, j

1Äi, j
v2

i, j

2

[
∂

∂v
· JFP

]
i, j

=
∑
i, j

[
1Si, j+ 1

2
Ri, j+ 1

2

v2
i, j − v2

i, j+1

2
+1Si+ 1

2 , j
Zi+ 1

2 , j

v2
i, j − v2

i+1, j

2

]
.

In general, this procedure fails at the boundaries, because the boundary terms cannot be
“paired.” However, the flux components at the boundaries are identically zero—as required
by particle conservation—and the expression above is exact.

According to Eqs. (22), (23), (26), and (27), we can write

v2
i, j − v2

i, j+1 = v2
p, j − v2

p, j+1= (vp, j + vp, j+1)(vp, j − vp, j+1)=−2vp, j+ 1
2
1vp, j+ 1

2
(36)

v2
i, j − v2

i+1, j = v2
r,i − v2

r,i+1 = (vr,i + vr,i+1)(vr,i − vr,i+1) = −2vr,i+ 1
2
1vr,i+ 1

2
. (37)

This transformation states that the differential ofv2 (dv2= 2v dv) is numerically exact in a
second order accurate discretization. This is in fact the key to the success in the numerical
integration by parts, since

∑
i, j

1Äi, j
v2

i, j

2

[
∂

∂v
· JFP

]
i, j

= −
∑
i, j

[
1vp, j+ 1

2
1Si, j+ 1

2

(
vp, j+ 1

2
Ri, j+ 1

2

)+1vr,i+ 1
2
1Si+ 1

2 , j

(
vr,i+ 1

2
Zi+ 1

2 , j

)]
= −

∑
i, j

[
1Äi, j+ 1

2

(
vp, j+ 1

2
Ri, j+ 1

2

)+1Äi+ 1
2 , j

(
vr,i+ 1

2
Zi+ 1

2 , j

)]
(38)

which is a numerical approximation of−∫ dv v · JFP, as desired. In Eq. (38), the volume
elements1Ä are given by

1Äi, j+ 1
2
= 2πvp, j+ 1

2
1vp, j+ 1

2
1vr,i

1Äi+ 1
2 , j
= 2πvp, j1vp, j1vr,i+ 1

2
.
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According to Eq. (30), the flux componentsRi, j±1/2 andZi±1/2, j will have two different
contributions, namely, the contribution from the friction term (given by(∂/∂v) · T̄ [H, H ],
that will henceforth be called the “T-term”) and the contribution from the diffusion term
(given by(∂/∂v) · [(∂2G( f )/∂v∂v) f ], and henceforth called the “G-term”). Thus,

R = Rg + Rt

Z = Zg + Zt .

Each contribution is studied separately.

3.4.2. Discretization of the diffusion term of the Fokker–Planck flux (“G-term”).In
cylindrical coordinates, the G-term reads

∂

∂v
·
[
∂2G( f )

∂v∂v
f

]
= Rgup + Zgur (39)

Rg = 1

vp

∂

∂vp

(
vp
∂2G

∂v2
p

f

)
+ ∂

∂vr

(
∂2G

∂vr ∂vp
f

)
− 1

vp

(
1

vp

∂G

∂vp
f

)
(40)

Zg = 1

vp

∂

∂vp

(
vp

∂2G

∂vr ∂vp
f

)
+ ∂

∂vr

(
∂2G

∂v2
r

f

)
. (41)

The Rg andZg components must be discretized so that the following integral (Eq. (11)) is
reproduced numerically:

1

2

∫
dv v · ∂

∂v
·
[
∂2G( f )

∂v∂v
f

]
= −1

2

∫
dv f H. (42)

The integral in the left hand side is discretized as indicated in Eq. (38), but substituting
Ri, j±1/2 andZi±1/2, j by Rgi, j±1/2 andZgi±1/2, j , respectively. The componentsRg andZg

are discretized as

Rgi, j± 1
2
=
(Grp f )i+ 1

2 , j+ 1
2
− (Grp f )i− 1

2 , j+ 1
2

1vr,i︸ ︷︷ ︸
R1

+ (vpGpp f )i, j+1− (vpGpp f )i, j
vp, j+ 1

2
1vp, j+ 1

2︸ ︷︷ ︸
R2

− (Gp f1vp/v
∗
p)i, j+1+ (Gp f1vp/v

∗
p)i, j

2vp, j+ 1
2
1vp, j+ 1

2︸ ︷︷ ︸
R3

Zgi± 1
2 , j
=
(vpGrp f )i+ 1

2 , j+ 1
2
− (vpGrp f )i+ 1

2 , j− 1
2

vp, j1vp, j︸ ︷︷ ︸
Z1

+ (Grr f )i+1, j − (Grr f )i, j
1vr,i+ 1

2︸ ︷︷ ︸
Z2

.

Of particular interest is the discretization chosen for(1/vp)((1/vp)(∂G/∂vp) f ) in Rg

(term R3 in Rgi, j+1/2). The term inside the parentheses has been averaged between the
neighboring integer nodes(i, j ) and(i, j + 1), each weighed by the perpendicular velocity
mesh spacing, andv∗p, j has been used instead ofvp, j . This form allows the sum to telescope
to the desired result for an arbitrary mesh, at the cost of losing the second order accuracy
for non-uniform meshes.
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The value of fi±1/2, j±1/2, which appears in theR1 and Z1 terms, is calculated via a
volume-weighed average of the values at the integer nodes:

fi± 1
2 , j± 1

2
= 1Äi, j fi, j +1Äi±1, j fi±1, j +1Äi, j±1 fi, j±1+1Äi±1, j±1 fi±1, j±1

1Äi, j +1Äi±1, j +1Äi, j±1+1Äi±1, j±1
.

Better interpolation schemes have been devised [1] for the Fokker–Planck equation in
spherical geometry (namely, exponential interpolation to incorporate the exponential nature
of the distribution function). Unfortunately, the structure of the Fokker–Planck collision
operator in cylindrical coordinates does not allow a straightforward implementation of such
interpolation schemes, and this issue remains to be an open one. At any rate, whatever
the interpolation scheme selected forfi±1/2, j±1/2, it is of paramount importance that the
interpolation coefficients of the values of the distribution function at the four corners be
symmetric, to allow the adequate cancellation of the discretized integrals (see sums ofR1
andZ1 terms below).

Note that the termZ1 is singular whenvp→ 0 ( j = 1). This singularity is resolved by
L’hospital’s rule (in the same way as done in Eqs. (58) and (59) in Appendix A), yielding

(vpGrp f )i+ 1
2 , j+ 1

2
− (vpGrp f )i+ 1

2 , j− 1
2

vp, j1vp, j

∣∣∣∣
j=1

→
4(Grp f )i+ 1

2 ,
3
2

1vp,1
.

Symmetry in the termR1 ati = 1 is imposed as follows (refer to Appendix A for details):

(Grp f )i+ 1
2 , j+ 1

2
− (Grp f )i− 1

2 , j+ 1
2

1vr,i

∣∣∣∣
i=1

→
2(Grp f ) 3

2 , j+ 1
2

1vr,1
.

The sum in Eq. (38), specialized for the components of the G-term, is performed separately
for each term inRgi, j+ 1

2
andZgi+ 1

2 , j
:

• Term R1,

∑
i, j

1vp, j+ 1
2
v2

p, j+ 1
2

[
(Grp f )i+ 1

2 , j+ 1
2
− (Grp f )i− 1

2 , j+ 1
2

]
=
∑

j

1vp, j+ 1
2
v2

p, j+ 1
2

∑
i

[
(Grp f )i+ 1

2 , j+ 1
2
− (Grp f )i− 1

2 , j+ 1
2

]
︸ ︷︷ ︸

=0

= 0.

• Term R2,

∑
i, j

1vr,i vp, j+ 1
2
[vp, j+1Gpp i, j+1 fi, j+1− vp, j Gpp i, j fi, j ]

=
∑
i, j

1vr,i vp, j Gpp i, j fi, j

−1vp, j︷ ︸︸ ︷[
vp, j− 1

2
− vp, j+ 1

2

]
=−

∑
i, j

1vr,i1vp, j vp, j Gpp i, j fi, j .
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• Term R3,

−
∑
i, j

1vr,i vp, j+ 1
2

1

2

(
Gpi, j+1 fi, j+11vp, j+1

v∗p, j+1
+ Gpi, j fi, j1vp, j

v∗p, j

)

=−
∑
i, j

1vr,i
Gpi, j fi, j1vp, j

v∗p, j

(
vp, j− 1

2
+ vp, j+ 1

2

2

)
︸ ︷︷ ︸

v∗p, j

=−
∑
i, j

1vr,i1vp, j Gpi, j fi, j .

• Term Z1,∑
i, j

1vr,i+ 1
2
vr,i+ 1

2

[
(vpGrp f )i+ 1

2 , j+ 1
2
− (vpGrp f )i+ 1

2 , j− 1
2

]
=
∑

i

1vr,i+ 1
2
vr,i+ 1

2

∑
j

[
(vpGrp f )i+ 1

2 , j+ 1
2
− (vpGrp f )i+ 1

2 , j− 1
2

]
︸ ︷︷ ︸

=0

= 0.

• Term Z2, ∑
i, j

vp, j1vp, j vr,i+1/2(Grr i +1, j fi+1, j − Grri , j fi, j )

=
∑
i, j

1vr,i vp, j Grr i , j fi, j

−1vr,i︷ ︸︸ ︷[
vr,i− 1

2
− vr,i+ 1

2

]
=−

∑
i, j

1vr,i1vp, j vp, j Grr i , j fi, j .

These sums are exact because the boundary terms are zero at both the inner boundaries (by
symmetry) and the outer boundaries (becausef = 0 if the distribution function is absolutely
confined in the domain). Then, the discretization of the G-term satisfies

1

2

∫
dv v · ∂

∂v
·
[
∂2G( f )

∂v∂v
f

]
≈
∑
i, j

[
1Äi, j+ 1

2

(
vp, j+ 1

2
Rgi, j+ 1

2

)+1Äi+ 1
2 , j

(
vr,i+ 1

2
Zgi+ 1

2 , j

)]
= −1

2

∑
i, j

1vr,i1vp, j vp, j

[
Gpp+ Gp

vp
+ Grr

]
i, j︸ ︷︷ ︸

∇2
v G=H

fi, j

= −
∑
i, j

1vr,i1vp, j vp, j
Hi, j fi, j

2
(43)

which is the numerical approximation of− 1
2

∫
dv f H = ∫ dvQ[H, H ], as desired. Note

that the previous result requires that[
Gpp+ Gp

vp
+ Grr

]
i, j

= Hi, j
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be satisfied numerically. Thus, the conservative discretization of the G-term has rendered
the adequate numerical formulation of theG problem (which, in this case, is the obvious
one; this, however, will not be the case for theH Rosenbluth potential, as will be clear
shortly).

3.4.3. Discretization of the friction term of the Fokker–Planck flux (“T-term”).Define
(∂/∂v) · T̄ [H, H ]= Rtup+ Ztur , whereRt andZt are expressed in cylindrical coordinates
as

Rt = 1

8π

[
1

2

∂H2
p

∂vp
+ H2

p

vp
− 1

2

∂H2
r

∂vp
+ ∂

∂vr
(Hr Hp)

]

Zt = 1

8π

[
−1

2

∂H2
p

∂vr
+ 1

2

∂H2
r

∂vr
+ 1

vp

∂

∂vr
(vpHr Hp)

]
.

These components are discretized in the following way:

Rti, j+ 1
2
= 1

8π

[
1

2

H2
pi, j+1− H2

pi, j

1vp, j+ 1
2

+
H2

pi, j+ 1
2

vp, j+ 1
2

− 1

2

H2
r i , j+1− H2

r i , j

1vp, j+ 1
2

+
(Hr Hp)i+ 1

2 , j+ 1
2
− (Hr Hp)i− 1

2 , j+ 1
2

1vr,i

]

Zti+ 1
2 , j
= 1

8π

[
v∗p, j
vp, j

(
−1

2

H2
pi+1, j − H2

pi, j

1vr,i+ 1
2

+ 1

2

H2
r i+1, j − H2

r i , j

1vr,i+ 1
2

)

+
(vpHr Hp)i+ 1

2 , j+ 1
2
− (vpHr Hp)i+ 1

2 , j− 1
2

vp, j1vp, j

]
.

Note that a non-physical correction factor,v∗p, j /vp, j , has been introduced inZti+1/2, j to
allow the sum to telescope to the desired result for an arbitrary mesh. It is relevant only for
non-uniform meshes. IntroducingRti, j+1/2 andZti+1/2, j into Eq. (38) (instead ofRi, j±1/2

andZi±1/2, j ), we obtain∫
dv v · ∂

∂v
· T̄ [H, H ] ≈

∑
i, j

[
1Äi, j+ 1

2

(
vp, j+ 1

2
Rti, j+ 1

2

)+1Äi+ 1
2 , j

(
vr,i+ 1

2
Zti+ 1

2 , j

)]
= 1

8π

∑
i, j

[
−1

2
1vr,i vp, j1vp, j H

2
pi, j +1vr,i vp, j+ 1

2
1vp, j+ 1

2
H2

p,i, j+ 1
2

+ 1

2
1vr,i vp, j1vp, j H

2
r i , j

]
+ B.T.s (44)

which is an approximate from of the theoretical result in Eq. (16). Here,B.T.srepresents
the boundary terms left unpaired after telescoping the sum.

3.4.4. Discretization of Q[H, H ] for the cancellation of the energy moment within the
domain. The necessary and sufficient condition for numerical energy conservation is

∑
i, j

1Äi, j
v2

i, j

2

[
∂

∂v
· JFP

]
i, j

=−
∑
i, j

[
1Äi, j+ 1

2

(
vp, j+ 1

2
Ri, j+ 1

2

)+1Äi+ 1
2 , j

(
vr,i+ 1

2
Zi+ 1

2 , j

)]= 0

(45)
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which, after introducing Eqs. (43) and (44), reads

1

8π

∑
i, j

[
−1

2
1vr,i vp, j1vp, j H

2
p,i, j +1vr,i vp, j+ 1

2
1vp, j+ 1

2
H2

p,i, j+ 1
2

+ 1

2
1vr,i vp, j1vp, j H

2
r i , j

]
=
∑
i, j

1vr,i1vp, j vp, j
Hi, j fi, j

2

plus boundary terms, which are neglected at this stage. Recalling the definition ofQ[H, H ]
(Eq. (12)), we can write

H f

2
= −H∇2

v H

16π
= −Q[H, H ]. (46)

Hence, exact numerical energy conservation requires

1

8π

∑
i, j

[
−1

2
1vr,i vp, j1vp, j H

2
pi, j +1vr,i vp, j+ 1

2
1vp, j+ 1

2
H2

pi, j+ 1
2

+ 1

2
1vr,i vp, j1vp, j H

2
r i , j

]
= −

∑
i, j

1vr,i1vp, j vp, j Qi, j [H, H ]. (47)

This identity is possible ifQ[H, H ] is rearranged as

Q[H, H ]= H∇2
v H

16π
= 1

16π

[
∂

∂vr
(Hr H)−H2

r + 2
H

vp

∂

∂vp
(vpHp)+ H2

p−
1

vp

∂

∂vp
(vpHpH)

]
which, once discretized, reads as

Qi, j [H, H ] = 1

16π

{
(Hr H)i+ 1

2 , j
− (Hr H)i− 1

2 , j

1vr,i
− v

∗
p, j

vp, j
H2

r i , j

+ 2Hi, j

vp, j

(vpHp)i, j+ 1
2
− (vpHp)i, j− 1

2

1vp, j
+ v

∗
p, j

vp, j
H2

pi, j

−
(vpHpH)i, j+ 1

2
− (vpHpH)i, j− 1

2

vp, j1vp, j

}
. (48)

This result renders Eq. (45) exact within the velocity domain, but fails at the boundaries
due to “unpaired” boundary terms. Theoretically, these boundary terms exactly cancel each
other (Eqs. (19), (20)); however, numerically, they do not. This result reflects an intrinsic
limitation of all numerical techniques in Fokker–Planck problems, namely, the impossibility
of considering infinite domains. Consequently,exactenergy conservation in Fokker–Planck
problems is not possible, although the error can be kept small by taking advantage of the
scaling laws of the mismatch at the boundary. This issue is discussed further in the next
section.

Note that the correction factorv∗p, j /vp, j has been introduced again to allow the sum to
telescope to the desired result for an arbitrary mesh. In Eq. (48),Hr andHp are discretized
using centered finite differences on the integer mesh, andHi, j+1/2 andHi+1/2, j are calculated
as the average of the values at the neighboring integer mesh points.
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In order for Eq. (45) to cancel,H must be obtained from Eq. (46) (discretized as indi-
cated in Eq. (48)), a non-linear equation that has to be solved iteratively using Newton’s
method, instead of using its (simpler) linear definition,∇2

v H =−8π f . Both problems (lin-
ear and non-linear) have in fact identical solutions in the continuum, but their numerical
solutions differ by truncation errors. The advantage of the non-linear representation is that,
as shown above, it leads to cancellation of the energy moment integral (thus imporving
energy conservation).

This subtle digression from the traditional treatment ofH is in fact crucial in the devel-
opment of an energy-conservative method, as will be shown in the numerical evidence pre-
sented in Section 5. The added computational expense that the non-linear problem reprsents
is minimized by using the numerical solution of the linearH -problem as the initial guess for
Newton’s algorithm. Thus, the non-linear correction is of the order of the truncation error
of the discretization, and Newton’s algorithm typically converges in less than five iterations
in spite of very stringent convergence tolerances (‖er ‖2< 10−9, whereer is the vector of
residuals).

4. SCALING OF THE ENERGY ERROR

This section presents aheuristictheoretical model to explain the scaling of the error in
the cancellation of the energy moment withvlimit andN, as observed in the results presented
in Section 5.

From the previous discussion, it is clear that the cancellation of the energy moment
is precluded by errors in the cancellation of boundary terms. These boundary terms are
represented theoretically by the boundary integrals in Eq. (18), reproduced as

∂E

∂t
∝
∮
∂Ä

dS · 1
2

v
(
∂H

∂v

)2

︸ ︷︷ ︸
I1

−
∮
∂Ä

dS · ∂H

∂v

(
v · ∂H

∂v
+ H

2

)
︸ ︷︷ ︸

I2

= 0. (49)

The mismatch is caused by second order truncation errors in the determination of the gradient
of H and the integration procedure itself, each contribution of comparable magnitude.
However, for the sake of heuristically understanding how this error behaves, only the effect
of the truncation term of the gradient will be studied. In a centered finite difference scheme,
the gradient of theH Rosenbluth potential is approximated by the following truncated
Taylor expansion in velocity space (vr , vp),

∂H

∂v
' ∂H

∂v

∣∣∣∣∣
0

+ 1

2

[
1vr

∂

∂vr
+1vp

∂

∂vp

](2)
∂H

∂v

∣∣∣∣∣
0

. (50)

The superscript (2) means exponent for the increments, and order for the derivatives; the
subscript 0 means exact value. Note that the angular coordinate does not appear because
the problem is symmetric with respect to the rotation axis (given byr in Fig. 1).

If the numerical errors in the approximations ofI1 and I2 in Eq. (49) are represented by
11 and12, respectively, the resultant error in the energy moment integral (represented by
1E) can be expressed as

1E = 11−12. (51)

The discussion ahead will focus on the integralI1, sinceI2 is theoretically equivalent toI1
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(Eqs. (19) and (20)), and hence expected to behave similarly. The leading term of the error
introduced inI1 due to a second order approximation of the gradient reads

11 ∼ K
∫
∂Ä

dS · v
(

1

2

[
1vr

∂

∂vr
+1vp

∂

∂vp

](2)
∂H

∂v

∣∣∣∣
0

)
· ∂H

∂v

∣∣∣∣
0

+ O(1v4), (52)

whereK is some proportionality constant. IfvlimitÀ v0, wherev0 is the characteristic speed
in the system (usually the thermal velocity in equilibrium), then the distribution function
can be considered a point source, andH0∼ 1

v
, wherev=√v2

r +v2
p . Then, the derivatives in

Eq. (52) can be calculated analytically, and the integral at the boundaries can be performed.
This has been done in Appendix B for three different cases: uniform mesh, geometric mesh,
and a combined uniform/geometric mesh.

Note that the accuracy of the numerical representation of the distribution function in the
limit of vlimitÀ v0 might be compromised, becausef ∼ e−(v/vo)

2
, and actual values off

may fall out of the machine precision range. However, because the absolute values taken
by f in this region are extremely small, the effect of large round-off errors whenvlimitÀ v0

on the accuracy of the global solution is expected to be minimal (i.e., havingf ∼ 10−16

instead of f ∼ 10−25 will have very little impact on the solution in the region of interest,
where f ∼ 1). In addition, note from Eq. (47) that the numerical cancellation of the energy
moment relies onH , which scales as1

v
and hence can be calculated much more accurately.

4.1. Scaling Laws for1E in a Uniform Mesh

The velocity increments in a uniform mesh are defined by1vr = vlimit/Nr and1vp=
vlimit/Np, whereNr ∗ Np= N, the total number of mesh points. The integral in Eq. (52)
yields, for this case (Appendix B),

11 ∼ −
v0
(
1v2

r + 1.41v2
p + 3.81vr1vp

)
v3

limit

∼ v0

Nvlimit
,

where it has been assumed thatNr ∼ Np∼
√

N. Hence, as12 behaves similarly, we expect

1E = 11−12 ∼ v0

Nvlimit
. (53)

This result indicates that, for a uniform mesh, the error in the energy rate of change decreases
as the number of mesh points increases, and decreases as the outer boundaries are pushed
further. Note that these arenot competing trends, because the result in Eq. (53) does not
depend on the increments themselves. In particular, the energy error will decrease even
whenvlimit is increased andN is left constant, even though the mesh gets coarser. Of course,
this is true as long as1vr and1vp remain sufficiently small to prevent higher order terms
[O(1v4)] becoming significant.

4.2. Scaling Laws for1E in a Geometric Mesh

A geometric velocity mesh, characterized by a geometric ratioξ , is defined by

1vk = ξ1vk−1 = ξ k−11v1

vk =
k∑

n=1

1vn = ξ k−1

ξ − 1
1v1,
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wherek= 2, . . . , Nr for vr , andk= 2, . . . , Np for vp. The error in the boundary integral
yields (Appendix B)

11 ∼ −C(ξ)
v0(ξ − 1)2

vlimit
, (54)

whereC(ξ) is a slowly varying function ofξ : C(ξ→ 1)' 5,C(ξ = 2)' 2.23. Since12 is
expected to behave identically, the error in the energy rate of change scales as

1E ∼ v0(ξ − 1)2

vlimit
= ε2v0

vlimit
,

whereε= ξ − 1. Note that this expression does not hold forε= 0 (uniform mesh limit),
due to the approximations made in the integration procedure in Appendix B (where it is
assumed thatξ

√
NÀ 1, or, equivalently,ε≥ 1/

√
N).

Note that most geometric ratios in a reasonably fine mesh will not go beyondξ ∼ 1.1.
Hence,ξ x = (1+ ε)x ≈ 1+ xε+ x(x−1)

2 ε2, and, according to the definition of the geometric
mesh, we can write

vlimit = ξ
√

N − 1

ξ − 1
1v1 ≈

(
1+
√

Nε

2

)√
N1v1,

where1v1 is the first velocity increment in the geometric mesh, chosen so that the mesh pro-
vides enough resolution in the region where the bulk of the distribution function is located.
In actual simulations, this usually results in

√
N1v1∼ 5v0 (wherev0 is the characteristic

speed in the system), and hence

ε ∼ 2√
N

[
vlimit

5v0
− 1

]
.

This result is compatible withε¿ 1 only if vlimit/5v0¿
√

N, which is typically the case
(for instance, in a 32× 32 mesh,vlimit would have to be> 160v0 to violate this condition).
Hence, in regards toε, two situations are possible:

• ε∼ 1/
√

N¿ 1. This is the case whenvlimit is only a few times larger than 5v0. The
error in the energy rate of change scales as

1E ∼ v0

Nvlimit
,

i.e., it decreases with bothvlimit andN. Note that this scaling is consistent with the uniform
mesh scaling; hence, it can be expected to apply also for 0<ε <1/

√
N.

• ε∼ vlimit/
√

Nv0¿ 1. This is the case whenvlimitÀ 5v0, and the energy error scales
as

1E ∼ vlimit

Nv0
.

The favorable scaling with the velocity domain limit is lost, as the energy error increases
with vlimit . Larger values ofε are not of interest, because accuracy would be lost, and higher
order terms in Eq. (52) would become significant, thus breaking the scaling.
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4.3. Scaling of1E in Combined Uniform-Geometric Meshes

The optimal choice will come from combining the two previous cases so that:

1. Enough resolution, with a well-known accuracy in the numerical method, is pro-
vided in the domain region where the distribution function is localized.

2. Largevlimits are possible without requiring a large number of mesh pointsN.
3. The energy error decreases with both increasing domain limits and increasing ac-

curacy.
4. The influence in the numerical solution of the non-physical correction factorv∗p, j /

vp, j , introduced in the discretization to allow the exact numerical cancellation of the energy
moment, is minimized.

Optimization will be achieved by constructing a mesh that discretizes the velocity domain
in the following way:

• The important physics in the problem will occur in the domain region limited by
vr , vp ∈ (0, 5v0), wherev0 is the characteristic velocity in the problem, typically defined as
the thermal velocity in equilibrium. Hence, to provide accuracy and resolution, this region
will be discretized with auniform mesh.
• The rest of the domain up to the outer boundaries will be discretized with ageometric

meshwith initial velocity increment equal to the increment of the uniform mesh, to ensure
a smooth transition between both meshes.
• The increments of the last two nodes in both velocity axes are set equal to the uniform

velocity increment, in an attempt to improve the scaling of the energy error by increasing
the accuracy at the outer boundaries.

The number of mesh points in the uniform and the geometric portions of the domain is
comparable (for instance, in a12/

1
2 or 1

3/
2
3 proportion). A sketch of the discretization of the

velocity domain that results is depicted in Fig. 4.

FIG. 4. Sketch of a combined uniform-geometric discretization mesh. Note the additional accuracy provided
at the outer boundaries.
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The error of the boundary integral in this combined domain is also obtained in Appendix B,
and yields

11 ∼ ε2v0

vlimit

[
−1

2
− 5

2

(
5v0

ε
√

Nvlimit

)
− 5

3

(
5v0

ε
√

Nvlimit

)2
]
. (55)

This result applies forε≥ 1/
√

N¿ 1. The result in Eq. (55) presents an expansion of the
error in terms of the parameter 5v0/ε

√
Nvlimit , which behaves as

ε ∼ 1√
N
(vlimit > 5v0)⇒ 5v0

ε
√

Nvlimit

∼ 5v0

vlimit
< 1

ε ∼ vlimit√
Nv0

(vlimit À 5v0)⇒ v0

ε
√

Nvlimit

∼
(

5v0

vlimit

)2

¿ 1,

using theε scaling results of the previous subsection. These relations are revealing for
understanding the scaling of the error of the energy moment integral,1E = 11−12:

• ε∼ 1/
√

N¿ 1. In principle, the first term in the expansion dominates, and hence,
the error in the energy rate of change scales as

1E ∼ ε2v0

vlimit
∼ v0

Nvlimit
.

However, since1E =11−12, and11 and12 originate from different forms of the same
integral, they are expected to behave similarly to first order, and the leading terms in the
expansion may cancel to some degree. This, together with the fact that the coefficient of
the leading term in the expansion is already small vs that of the first order term, suggests
that the latter may actually dominate the scaling of1E in some cases. Thus, in some cases
it may occur that

1E ∼ εv2
0√

Nv2
limit

∼ 1

N

(
v0

vlimit

)2

.

Some numerical evidence of this quadratic scaling is presented in Section 5. Hence,

1E ∼
[

v0

Nvlimit
,

1

N

(
v0

vlimit

)2
]
.

Note that, at any rate, the uniform mesh scaling has to be recovered whenε→ 0 (uniform
mesh limit).
• ε∼ vlimit/

√
Nv0¿ 1. In this case, the energy error may scale as

1E ∼
[
vlimit

Nv0
,

v0

Nvlimit

]

depending on the degree of cancellation of the leading terms of11 and12.
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TABLE I

Scaling Laws of∆E in Terms of vlimit andN as a Function

of ε = ξ− 1 (whereξ Is the Geometric Ratio), for uniform,

Geometric, and Combined Meshes

Scaling of1E ε∼ 1√
N
¿ 1 ε∼ vlimit√

Nv0
¿ 1

Uniform mesh v0
Nvlimit

Geometric mesh v0
Nvlimit

vlimit
Nv0

Combined mesh v0
Nvlimit

,
v2
0

Nv2
limit

vlimit
Nv0

,
v0

Nvlimit

4.4. Summary of the Scaling Laws of1E for Different Meshes

Table I summarizes the scaling laws of1E obtained in the previous paragraphs, for
the three different meshes considered, namely, uniform, geometric, and combined mesh.
This table confirms that the combined mesh is the optimal choice, since it provides
scalings as good as those of the uniform mesh (forε∼ 1/

√
N¿ 1), and is much more

flexible. However, it should be borne in mind that the truncation error of the discretiza-
tion of the Fokker–Planck equation is only first order accurate in the geometric (non-
uniform) subdomain (centered finite differences are second order accurate only in uni-
form meshes), and the accuracy of the numerical representation increases asε decreases.
Hence, the final selection of the velocity domain and its discretization mesh must observe
a certain compromise between energy conservation and the accuracy of the numerical
method.

5. RESULTS

The goal of this section is twofold, namely, (1) compare the performance of the energy-
conservative discretization with that of standard second-order, particle-conservative dis-
cretization techniques, and (2) show the numerical scaling of1E with vlimit and N, and
compare them with the theoretical trends derived in Section 4. For this purpose, a 2D
cylindrical velocity domain is considered, discretized with a combined uniform-geometric
mesh with

√
N points per direction (N total) split in a1

2/
1
2 proportion between the uniform

and geometric regions. Two additional mesh points, spaced with the uniform grid spacing,
provide extra accuracy at the outer boundaries. The uniform mesh region is limited by
vr , vp ∈ [0,

√
2]; the geometric mesh region is limited byvr , vp ∈ [

√
2, vlimit ]; velocities are

in units of an arbitrary reference velocity,v0.
Two distinct test distribution functions will be considered for the numerical experiments

in order to illustrate a range of characteristic problems:

1. A radial beam, characterized by a distribution functionf (vr , vp) centered onvr =
0.5 andvp= 0, with beam temperatureTb= 8.89· 10−3 and average energy〈E〉=0.138.

2. A symmetric beam, characterized byf (vr , vp)= f (v), centered onv= √v2
r + v2

p
=0.5, with beam temperatureTb= 8.89 · 10−3 and average energy〈E〉=0.147.

Energies are in units ofv2
0. Both beams are localized in the uniformly discretized velocity

subdomain and are depicted in Fig. 5.
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FIG. 5. Test distribution functions employed in the assessment of the energy conservation properties of the
discretization. These plots only cover the uniformly discretized region of the domain. Velocity units are arbitrary.
Some reference values of the distribution function at selected contours are indicated; contours are equally spaced.

5.1. Performance of the New Discretization Concept

To test the success in improving the cancellation of the energy moment of the Fokker–
Planck collision operator, the error1E will be calculated and compared for three different
discretization schemes:

1. The energy-conservative discretization developed here, withH obtained from its
non-linear definition (Eq. (46)). This scheme will be identified by NLS (non-linear solver).

2. The energy-conservative discretization withH obtained from its linear definion
(Eq. (3)). This scheme will be identified by LS (linear solver). This case is introduced
to address the importance of solving the non-linear problem forH for adequate energy
conservation, instead of the more convenient linear approach.

3. A standard particle-conservative, second order discretization of the Fokker–Planck
collision operator. This discretization is based upon the particle-conservative discretization
in Eq. (34), but using the standard form of the Fokker–Planck flux (Eq. (2)),

JFP = f
∂H( f )

∂v
− 1

2

∂

∂v
·
(
∂2G( f )

∂v∂v
f

)
.
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In cylindrical coordinates, the Fokker–Planck flux componentsJFP = Rup+ Zur are,
specifically,

Z = f
∂H

∂vr
− ∂

2G

∂v2
r

∂ f

∂vr
− ∂2G

∂vr ∂vp

∂ f

∂vp

R = f
∂H

∂vp
− ∂

2G

∂v2
p

∂ f

∂vp
− ∂2G

∂vr ∂vp

∂ f

∂vr
.

All the derivatives are discretized with centered finite differences in the stencil depicted in
Fig. 2. This scheme will be identified by NEC (non-energy-conservative).

Note that no time integration is involved in the calculation of1E, which is simply the error
introduced in the numerical integration of the energy moment of the Fokker–Planck collision
operator. The issue of the propagation of this error in time will be addressed in Ref. [3],
where the development of an energy conservative solver, based upon the present difference
scheme, is discussed. Suffice it to say here that, as shown in the same reference,1E ∼ 0 is
conditionsine-qua-nonto construct an energy-conservative time advancing algorithm. This
justifies the adequacy of1E as a figure of merit to address the performance of the proposed
discretization against other alternatives.

The behavior of the error in the energy moment1E (defined in Eq. (51)) for these three
schemes, in terms ofvlimit and for different mesh refinements (represented by the number
of mesh points,N= 2n× 2n) is given in Fig. 6. Several important comments are in order
from this plot:

• In all curves, the leftmost datapoint (vlimit =
√

2) corresponds to the case when there
is no geometric mesh region, and only the uniform mesh region is considered. To present
a fair comparison of the improvement in the cancellation of the energy moment withvlimit ,
the spacing in the uniform mesh has been kept constant in all datapoints belonging to a
same curve. With this in mind, the decreasing trend of the energy moment error1E with
vlimit has a clear interpretation, namely, that introducing a geometric mesh to complement
the uniform mesh region has a beneficial effect in the energy conservation properties of the
NLS scheme in all scenarios, but has little or no effect in the LS and NEC schemes. This is
expected, as the geometric region only benefits when the cancellation of the energy moment
within the domain is ensured.
• The relative performance of the three different schemes does not depend on the

number of mesh points, as evidenced by the fact that the plots forn= 5 (Figs. 6a, 6c)
andn= 7 (Figs. 6b, 6d) are essentially identical (but for the absolute magnitude of the
error).
• There is, however, a strong dependence on the test case (radial/symmetric) and the

limit of the velocity domainvlimit . Focusing on theradial beam test case(Figs. 6c, 6d), both
the NLS and LS schemes clearly outperform the NEC scheme, for anyvlimit , by at least
an order of magnitude. Note that, while the NEC scheme yields a flat error profile with
vlimit , both the NLS and LS schemes show rapidly decreasing trends in the energy error.
However, while the NLS keeps a monotonic exponentially decreasing trend, the energy
error in the LS scheme ends up saturating—and even increasing—after a certainvlimit

threshold.
• The saturation of the error in the LS scheme, which is mild in the radial beam test

case, is deleterious for thesymmetric beam(Figs. 6a, 6b). There, both the NEC and the LS



642 CHACÓN ET AL.

F
IG

.6
.

C
om

pa
ris

on
of

th
e

en
er

gy
co

ns
er

va
tio

n
pe

rf
or

m
an

ce
of

di
ffe

re
nt

di
sc

re
tiz

at
io

n
m

et
ho

ds
fo

r
(a

)
a

sy
m

m
et

ric
be

am
in

a
32

×
32

m
es

h(
n
=

5)
;

(b
)

a
sy

m
m

et
ric

be
am

in
a

12
8×

12
8

m
es

h(
n
=

7)
;(

c)
a

ra
di

al
be

am
in

a
32×

32
m

es
h(

n
=

5)
;a

nd
(d

)
a

ra
di

al
be

am
in

a
12

8×
12

8
m

es
h(

n
=

7)
.



CONSERVATIVE DIFFERENCE SCHEME 643

shemes render a flat energy error profile, and only the NLS scheme shows a decreasing trend
of the energy error withvlimit , although eventually finds a minimum and starts increasing.

These trends clearly indicate two points: first, the difference scheme proposed in this paper
succeeds in canceling the energy moment within the domain, as evidenced by the decreasing
trend of1E with vlimit ; otherwise, the expected trend would be flat, as in the NEC scheme.
Second, it is essential to solve the non-linear constitutive equation for theH Rosenbluth
potential in order to take full advantage of the energy-conservative properties of the differ-
ence scheme, as evidenced by the striking differences in performance between the NLS and
the LS schemes.

5.2. Scaling of1E

Although theoretical scaling laws have been derived in Section 4 for three different
meshes, namely, uniform mesh, geometric mesh, and a combined uniform-geometric mesh
(the latter being the more advantageous in terms of flexibility, resolution, and scaling), only
the latter will be considered in this section, for several reasons. First, the flexibility of the
combined mesh allows posing extreme cases, both in the number of mesh points and in
velocity domain size, without compromising the numerical resolution of the distribution
function. Clearly, if pure geometric or uniform meshes were employed, the combination of
smallN with large velocity domains would result in a lack of resolution of the distribution
function that would obscure the scaling of1E (i.e., it would be difficult to assess if the
difference in the energy error were due to the scaling law or to lack of resolution). Second,
the combined mesh can always be tailored to provide a uniform mesh in the region where the
distribution function is located, thus ensuring sufficient resolution. Finally, the combined
mesh exhibits the main features of both the uniform and the geometric cases; thus, testing
the understanding of the combined mesh essentially tests also the understanding of the pure
geometric and uniform mesh cases. For the following numerical experiments, the same
velocity domain, discretization mesh, and test cases defined above are used.

5.2.1. Scaling of1E with vlimit . The evolution of1E with vlimit for various mesh re-
finements is presented in Fig. 7, for both the symmetric beam (Fig. 7a) and the radial beam
(Fig. 7b) cases. Note that the behavior of1E in terms ofvlimit for the radial and symmetric
beams is remarkably different: while in the radial beam case the scaling is monotonic and
clearly follows the 1/vlimit prediction, the symmetric beam case is more complex, presenting

FIG. 7. Scaling of1E with vlimit for various mesh refinements in (a) the symmetric beam test case; (b) the
radial beam test case.



644 CHACÓN ET AL.

FIG. 8. Scaling of1E with the number of mesh pointsN= 2n× 2n for different values ofvlimit in (a) the
symmetric beam test case; (b) the radial beam test case.

four different regions:

• vlimit ∈ (1.4, 10):∼ 1/vlimit scaling.
• vlimit ∈ (10, 30): transition region.
• vlimit ∈ (30, 50):∼ 1/v2

limit scaling.
• vlimit > 50:∼ vlimit scaling.

The behavior of the energy error1E in both the symmetric and radial beams is essentially
consistent with the scaling analysis presented in Section 4 (see Table I) for the combined
uniform-geometric meshes. The differences in the behavior of1E between the symmetric
beam and the radial beam are probably due to differences in the magnitude of the leading
order term in the energy error: while it is large in the radial beam, dominating the scaling, it
is small in the symmetric beam, thus allowing higher order terms of the scaling to surface.

5.2.2. Scaling of1E with the number of mesh points N.The evolution of1E with
the number of mesh pointsN for various domain limits is depicted in Fig. 8, for both
the symmetric (Fig. 8a) and radial (Fig. 8b) beams. All trends follow the 1/N scaling, as
predicted in Table I.

6. CONCLUSIONS

The present work has successfully dealt with the task of developing a systematic dis-
cretization method of the Fokker–Planck collision operator in multidimensional geometries
that preserves particles exactly, and improves energy conservation with respect to previously
available approaches. The discretization method can be applied to both uniform meshes and
non-uniform meshes.

The development of such a discretization method scheme has been possible by a theoret-
ical reformulation of the Fokker–Planck collision operator into the tensor Fokker–Planck
formalism, which yields the symmetries of the theoretical system more conveniently for the
development of a conservative numerical representation of the problem. In fact, it has been
the numerical preservation of these theoretical symmetries that has driven the development
of the discretization scheme.

The Fokker–Planck collision operator is non-linear in that its coefficients are integral
functions of the solution sought. As it is known from earlier work in 1D Fokker–Planck [2, 9],
the numerical representation of these coefficients is crucial to achieve energy conservation.
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This research has shown that this is also the case in multidimensional problems. In particular,
it has been found that theH Rosenbluth potential has to be obtained numerically from the
discretization of a non-linear differential problem, instead of using the simpler linear Poisson
differential formulation (Rosenbluth). Both problems are equivalent in the continuum, but
their numerical solutions differ by truncation errors.

This research has shown theoretically that the difference scheme developed herein ensures
the exact numerical cancellation of the energy momentwithin the velocity domain, and that
errors in the cancellation occur at the outer boundaries. Heuristic scaling laws for this error
in terms of the number of mesh pointsN and the velocity domain limitvlimit have been
derived and validated numerically.

Finally, it should be stressed that, although the development of an energy-conservative
discretization method is a necessary condition to develop an energy-conservative solver, it
is not sufficient. Thus, this step has to be combined with the appropriate time discretiza-
tion scheme to construct an energy-conservative Fokker–Planck solver. This task has been
undertaken by the authors in Ref. [3].

APPENDIX A

Particle Conservative Discretization in Velocity Space

Nine different regions are identified in the velocity domain (inner domain, four bound-
aries, and four corner points) that will render as many different forms of the volume and
surface elements in velocity space. The specialization of Eq. (34) for each of these nine
cases is discussed next.

Discretization of(∂/∂v) · JFP in the inner domain(i 6= 1; j 6= 1; i 6= Nr ; j 6= Np). The
volume element associated to the node(i, j ) in cylindrical space is a hollow cylinder with
height1vr,i , mean radiusvp, j , and thickness1vp, j . Then, the corresponding volume and
surface elements for the node(i, j ) are

1Si+ 1
2 , j
= 1Si− 1

2 , j
= 2πvp, j1vp, j

1Si, j+ 1
2
= 2πvp, j+ 1

2
1vr,i

1Si, j− 1
2
= 2πvp, j− 1

2
1vr,i

1Äi, j = 2πvp, j1vp, j1vr,i .

Introducing these results in Eq. (34), the following discretized equation results,[
∂

∂v
· JFP

]
i, j

=
vp, j+ 1

2
Ri, j+ 1

2
− vp, j− 1

2
Ri, j− 1

2

vp, j1vp, j
+

Zi+ 1
2 , j
− Zi− 1

2 , j

1vr,i
(56)

which is exactly the same result that would have been obtained by discretizing directly the
differential expression of the divergence in Eq. (31).

Discretization of(∂/∂v) · JFP at thevp= 0boundary(i 6= 1; i 6= Nr ; j = 1). The volume
corresponding to this velocity node is a solid cylinder of radius1vp,1/2 and height1vr,i .
Also, because the control volume corresponding to this node cannot extend further that the
vp= 0 axis, the relevant component of the flux is notRi,1/2 at that boundary (the nodej = 1

2
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does not exist), butRi,1, which is zero for particle conservation. The volume and surface
elements corresponding to this volume are

1Si+ 1
2 ,1
= 1si− 1

2 ,1
= π

(
1vp,1

2

)2

1Si, 3
2
= 2π

(
1vp,1

2

)
1vr,i

1Äi,1 = π
(
1vp,1

2

)2

1vr,i .

Then, the discretized divergence operator is, for this case,[
∂

∂v
· JFP

]
i, j=1

=
4Ri, 3

2

1vp,1
+

Zi+ 1
2 ,1
− Zi− 1

2 ,1

1vr,i
. (57)

Note that the singularity present in the differential form of the divergence operator in Eq. (31)
atvp= 0( j = 1) has been resolved in Eq. (57), obtained from the integral formulation. The
same result, however, can be obtained from the differential formulation, by realizing that
R→ 0 whenvp→ 0 by conservation of particles (i.e., the flux normal to the boundary is
zero), and hence

1

vp

∂

∂vp
(vpR)

∣∣∣∣
vp→0

=
[
∂R

∂vp
+ R

vp

]
vp→0

= 2
∂R

∂vp

∣∣∣∣
vp→0

(58)

by L’hospital’s rule. This result is discretized at the(i, j = 1) node as

2
∂R

∂vp

∣∣∣∣
i, j=1

= 2
Ri, 3

2
− Ri,1

1vp,1/2
=

4Ri, 3
2

1vp,1
(59)

(Ri,1= 0 for particle conservation), which is exactly the same result as in Eq. (57). Thus,
both approaches are equivalent.

Discretization of(∂/∂v) · JFP at thevr = 0 boundary(i = 1; j 6= 1; j 6= Np). The vol-
ume element in this case is a hollow cylinder with height1vr,1/2, and mean radius and
thickness given byvp, j and1vp, j , respectively. As in thej = 1 case, the nodei = 1

2 does
not exist, and particle conservation forcesZ1, j = 0. Hence, the volume and surface elements
read as

1S3
2 , j
= 2πvp, j1vp, j

1S1, j+ 1
2
= 2πvp, j+ 1

2

1vr,1

2

1S1, j− 1
2
= 2πvp, j− 1

2

1vr,1

2

1Ä1, j = 2πvp, j1vp, j
1vr,1

2
.

The divergence operator of the Fokker–Planck flux at this boundary reads[
∂

∂v
· JFP

]
i=1, j

=
vp, j+ 1

2
Ri, j+ 1

2
− vp, j− 1

2
R1, j− 1

2

vp, j1vp, j
+

2Z 3
2 , j

1vr,1
. (60)
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Discretization of(∂/∂v) · JFP at thevp= vlimit boundary(i 6= 1; i 6= Nr ; j = Np). The
volume element in this case is a hollow cylinder with height1vr,i , and inner radius and
thickness given byvp,Np−1/2 and1vp,Np/2, respectively. As in previous cases, particle
conservation is imposed at the boundary by forcingRi,Np = 0. The volume and surface
elements are

1Si+ 1
2 ,Np
= 1Si− 1

2 ,Np
= 2πvp,Np

1vp,Np

2
1Si,Np− 1

2
= 2πvp,Np− 1

2
1vr,i

1Äi,Np = 2πvp,Np

1vp,Np

2
1vr,i .

The discretization of the divergence operator of the Fokker–Planck flux results[
∂

∂v
· JFP

]
i, j=Np

= −
2vp,Np− 1

2
Ri,Np− 1

2

vp,Np1vp,Np

+
Zi+ 1

2 ,Np
− Zi− 1

2 ,Np

1vr,i
. (61)

Discretization of (∂/∂v) · JFP at thevr = vlimit boundary(i = Nr ; j 6= 1; j 6= Np). The
volume element associated is a hollow cylinder with height1vr,Nr /2, mean radiusvp, j , and
thickness1vp, j . Particle conservation requiresZNr , j = 0. The volume and relevant surface
elements are

1SNr− 1
2 , j
= 2πvp, j1vp, j

1SNr , j+ 1
2
= 2πvp, j+ 1

2

1vr,Nr

2

1SNr , j− 1
2
= 2πvp, j− 1

2

1vr,Nr

2

1ÄNr, j = 2πvp, j1vp, j
1vr,Nr

2
.

The discretized divergence operator reads as[
∂

∂v
· JFP

]
i=Nr , j

=
vp, j+ 1

2
RNr , j+ 1

2
− vp, j− 1

2
RNr , j− 1

2

vp, j1vp, j
−

2ZNr− 1
2 , j

1vr,Nr

. (62)

Discretization of (∂/∂v) · JFP at thevr = 0, vp= 0 corner point(i = 1, j = 1). The vol-
ume element is a solid cylinder with radius1vp,1/2 and height1vr,1/2, with outer surfaces
and volume given by

1S3
2 ,1
= π

(
1vp,1

2

)2

1S1, 3
2
= 2π

1vp,1

2

1vr,1

2

1Ä1,1 = π
(
1vp,1

2

)2
1vr,1

2
.

The discretized equation for the divergence of the Fokker–Planck flux is[
∂

∂v
· JFP

]
i=1, j=1

=
4R1, 3

2

1vp,1
+

2Z 3
2 ,1

1vr,1
, (63)
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where the components of the flux that cross the boundaries have been set to zero to conserve
particles.

Discretization of(∂/∂v) · JFP at thevr = 0, vp= vlimit corner point(i = 1, j = Np). The
volume element is a hollow cylinder with inner radiusvp,Nr−1/2, thickness1vp,Nr /2, and
height1vr,1/2, and outer surfaces and volume given by

1S3
2 ,Np
= 2πvp,Np

1vp,Np

2

1S1,Np− 1
2
= 2πvp,Np− 1

2

1vr,1

2

1Ä1,Nr = 2πvp,Np

1vp,Np

2

1vr,1

2

and the discretized equation for the divergence of the Fokker–Planck flux is[
∂

∂v
· JFP

]
i=1, j=Np

= −
2vp,Np− 1

2
R1,Np− 1

2

vp,Np1vp,Np

+
2Z 3

2 ,Np

1vr,Np

. (64)

Particle conservative boundary conditions have been imposed as usual.

Discretization of(∂/∂v) · JFP at thevr = vlimit, vp= 0corner point(i = Nr , j = 1). The
volume corresponding to this velocity node is a solid cylinder of radius1vp,1/2 and height
1vr,Nr /2. Hence

1SNr− 1
2 ,1
= π

(
1vp,1

2

)2

1SNr ,
3
2
= 2π

(
1vp,1

2

)
1vr,Nr

2

1ÄNr ,1 = π
(
1vp,1

2

)2
1vr,Nr

2
.

The discretized divergence operator reads, after imposing the boundary conditions,[
∂

∂v
· JFP

]
i=Nr , j=1

=
4RNr ,

3
2

1vp,1
−

2ZNr− 1
2 ,1

1vr,Nr

. (65)

Discretization of(∂/∂v) · JFP at thevr = vlimit, vp= vlimit corner point(i = Nr , j = Np).
The volume corresponding to this velocity node is a hollow cylinder of inner radiusvp,Np−1/2,
thickness1vp,Np/2, and height1vr,Nr /2. Hence

1SNr− 1
2 ,Np
= 2πvp,Np

1vp,Np

2

1SNr ,Np− 1
2
= 2πvp,Np− 1

2

1vr,Nr

2

1ÄNr ,Np = 2πvp,Np

1vp,Np

2

1vr,Nr

2
.
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The discretized divergence yields, after imposing the boundary conditions,[
∂

∂v
· JFP

]
i=Nr ,Np

= −
2vp,Np− 1

2
RNr ,Np− 1

2

vp,Np1vp,Np

−
2ZNr− 1

2 ,Np

1vr,Nr

. (66)

APPENDIX B

Integration of Energy Error at the Boundaries

The error at the boundaries stemming from a second order discretization reads, according
to Eq. (52),

11 ∼
∫
∂Ä

dS · v
([
1vr

∂

∂vr
+1vp

∂

∂vp

](2)
∂H0

∂v

)
· ∂H0

∂v
+ O(1v4). (67)

This integral is restricted to the outer boundaries of the velocity domain considered in Sub-
section 3.1, defined by∂Är ={vr ∈ [0, vlimit ], vp= vlimit} and∂Äp={vp ∈ [0, vlimit ], vr =
vlimit}. Expanding the term in square brackets in Eq. (67),[
1vr

∂

∂vr
+1vp

∂

∂vp

](2)
∂H0

∂v
=
[
(1vr )

2 ∂
2

∂v2
r

+ (1vp)
2 ∂

2

∂v2
p

+ 21vp1vr
∂2

∂vr ∂vp

]
∂H0

∂v

= ∂

∂v

[
(1vr )

2∂
2H0

∂v2
r

+ (1vp)
2∂

2H0

∂v2
p

+ 21vp1vr
∂2H0

∂vr ∂vp

]
.

The last step can be done because angular symmetry allows∂/∂vr , ∂/∂vp, and∂/∂v to
commute, and it is assumed that the variations of the increments withvr , vp are negligible
compared to the variations ofH0. If vlimitÀ v0, thenH0∼ K (v0/v)= Kv0/

√
v2

r + v2
p, and

∂H0

∂vr
= −Kv0

vr

v3

∂H0

∂vp
= −Kv0

vp

v3

∂2H0

∂v2
r

= −Kv0
1− 3

(
v2

r /v
2
)

v3

∂2H0

∂v2
p

= −Kv0
1− 3

(
v2

p/v
2
)

v3

∂2H0

∂vp∂vr
= Kv0

3vr vp

v5
.

With these results, and dropping theKv0 constant, we find

(1vr )
2∂

2H0

∂v2
r

+ (1vp)
2∂

2H0

∂v2
p

+ 21vp1vr
∂2H0

∂vr ∂vp

= (1vr )
2+ (1vp)

2

v3
− 3(vr1vr + vp1vp)

2

v5
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which, introduced in the energy error integral, yields

11 ∼
∫
∂Ä

dS · v
[
∂H0

∂vr

∂

∂vr

(
(1vr )

2+ (1vp)
2

v3
− 3(vr1vr + vp1vp)

2

v5

)

+ ∂H0

∂vp

∂

∂vp

(
(1vr )

2+ (1vp)
2

v3
− 3(vr1vr + vp1vp)

2

v5

)]
+ O(1v4).

Carrying the derivatives through and grouping terms, the following results,

11 ∼
∫
∂Ä

dS · v
(
(1vr )

2+ (1vp)
2

v6
− 3(vr1vr + vp1vp)

2

v8

)

= 2πvlimit

∫ vlimit

0
dvr vr

(
(1vr )

2+ (1vp)
2
vp=vlimit

v6
− 3

(
vr1vr + vlimit(1vp)vp=vlimit

)2

v8

)

+ 2π
∫ vlimit

0
dvpv

2
p

(
(1vr )

2
vr=vlimit

+ (1vp)
2

v6
− 3(vlimit(1vr )vr=vlimit + vp1vp)

2

v8

)
+O(1v4).

Since the value ofv does not change drastically at the boundaries (vlimit ≤ v≤ vlimit

√
2), we

assumev∼ vlimit (hence, coming out of the integral), and11 simplifies to

11 ∼ −
(1vp)

2
vp=vlimit

+ 2
3(1vr )

2
vr=vlimit

v3
limit

+
∫ vlimit

0 dvr vr (1vr )
2

v5
limit

+
∫ vlimit

0 dvpv
2
p(1vp)

2

v6
limit

− 6

[
(1vp)vp=vlimit

∫ vlimit

0 dvr v
2
r1vr

v6
limit

+ (1vr )vr=vlimit

∫ vlimit

0 dvpv
3
p1vp

v7
limit

]

− 3

[∫ vlimit

0 dvr v
3
r (1vr )

2

v7
limit

+
∫ vlimit

0 dvpv
4
p(1vp)

2

v8
limit

]
+ O(1v4), (68)

where the 2π constant has been dropped for simplicity. To perform the remaining integrals,
information about the details of the discretization of the velocity domain is needed. Three
possibilities are considered at this point: uniform mesh, geometric mesh, and a combined
uniform/geometric mesh.

B.1. Uniform mesh. In a uniform mesh, the velocity increments are constant and the
integrals in Eq. (68) are rendered trivial. Recovering theKv0 constant, the following ex-
pression results:

11 ∼ −
Kv0

(
1v2

r + 1.41v2
p + 3.81vr1vp

)
v3

limit

.

B.2. Geometric mesh. In a geometric mesh defined by the ratioξ (which will be as-
sumed equal in bothvr andvp directions for simplicity), the velocity increments satisfy

1vr,i = ξ1vr,i−1 = ξ i−11vr,1 (69)

1vp, j = ξ1vp, j−1 = ξ j−11vp,1 (70)
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and the radial and perpendicular velocities at the node(i, j ) are given by

vr,i =
i∑

n=1

1vr,n = ξ i − 1

ξ − 1
1vr,1 (71)

vp, j =
j∑

n=1

1vp,n = ξ j − 1

ξ − 1
1vp,1. (72)

At the outer boundaries,i = Nr , j = Np. Typically,Nr À 1, NpÀ 1. Asξ >1, thenξ Nr À 1,
ξ NpÀ 1 (provided thatξ >1+ 1/Nr andξ >1+ 1/Np), and we can write

vlimit ∼ ξ Nr1vr,1

ξ − 1
∼ 1vr,Nr

ξ − 1
⇒ 1vr,Nr = (1vr )vlimit ∼ (ξ − 1)vlimit (73)

vlimit ∼ ξ Np1vp,1

ξ − 1
∼ 1vp,Np

ξ − 1
⇒ 1vp,Np = (1vp)vlimit ∼ (ξ − 1)vlimit . (74)

With this information, the integrals in Eq. (68) can be calculated as follows. Take, for
instance, the first integral, given by

∫ vlimit

0 dvr vr (1vr )
2, and discretize it so that

∫ vlimit

0
dvr vr (1vr )

2 '
Nr−1∑
i=1

vr,i (1vr,i )
3 = (1vr,1)

4

ξ3(ξ − 1)

Nr−1∑
i=1

(ξ4i − ξ3i ).

Equations (69) and (71) have been used for the last step. Each of the two sums in the previous
result is the sum of a geometric series, with ratios given byξ4 andξ3, respectively. Hence,
the sum can be performed to find∫ vlimit

0
dvr vr (1vr )

2 ' (1vr,1)
4

ξ3(ξ − 1)

[
ξ4Nr − 1

ξ4− 1
− ξ

3Nr − 1

ξ3− 1

]
.

Recalling thatξ Nr À 1, and using Eq. (69) again, the following results:∫ vlimit

0
dvr vr (1vr )

2 ≈ (1vr,Nr )
3

ξ3(ξ − 1)

[
ξ41vr,Nr

ξ4− 1
− ξ

31vr,1

ξ3− 1

]
.

Neglecting the second term in the right hand side (1vr,1¿1vr,Nr ), and using Eq. (73), the
integral finally yields ∫ vlimit

0
dvr vr (1vr )

2 ∼ v4
limit(ξ − 1)3

ξ4− 1
.

All the integrals in Eq. (68) can be calculated in a similar way, yielding∫ vlimit

0
dvpv

2
p(1vp)

2 ∼ v5
limit(ξ − 1)3

ξ5− 1∫ vlimit

0
dvr v

2
r1vr ∼ v4

limit(ξ − 1)2

ξ4− 1∫ vlimit

0
dvpv

3
p1vp ∼ v5

limit(ξ − 1)2

ξ5− 1



652 CHACÓN ET AL.

∫ vlimit

0
dvr v

3
r (1vr )

2 ∼ v6
limit(ξ − 1)3

ξ6− 1∫ vlimit

0
dvpv

4
p(1vp)

2 ∼ v7
limit(ξ − 1)3

ξ7− 1
.

Introducing all these integrals in Eq. (68), together with Eqs. (73) and (74), it follows that

11 ∼ −v0(ξ − 1)2

vlimit

[
5

3
+ (ξ − 1)

(
5

ξ4− 1
+ 5

ξ5− 1
+ 3

ξ6− 1
+ 3

ξ7− 1

)]
.

B.3. Combined uniform/geometric mesh.In an attempt to provide sufficient accuracy
where it is needed (namely, the region where the bulk off is), the velocity domain may be
discretized uniformly there, and with a geometric mesh elsewhere. Also, the outer bound-
aries may be discretized with a finer mesh to decrease the energy error introduced at the
boundary and to improve its scaling.

Since the uniform region is typically very small compared to the whole domain (the most
important physics will occur forv <5v0, andvlimit/v0À 1), its contribution to11 at the
boundaries can be neglected. The rest of the outer boundaries is in fact discretized with a
geometric mesh, and most of the development in the previous section applies.

On the contrary, a finer discretization at the outer boundaries will indeed have a noticeable
effect. This is done by decreasing the velocity increment associated with the last nodes in
bothvr andvp directions; typically, this increment will be set equal to the increment of the
uniform mesh,1vun∼ 5v0/

√
N. Hence,(1vp)vp=vlimit = (1vr )vr=vlimit =1vun. Introducing

these increments in Eq. (68), together with the integrals performed for the geometric mesh,
it follows that, for the combined mesh,

11 ∼ (ξ − 1)2v0

vlimit

[
C1(ξ)+ C2(ξ)

v0

(ξ − 1)
√

Nvlimit

+ C3(ξ)

(
v0

(ξ − 1)
√

Nvlimit

)2
]
,

where the coefficients are given by

C1(ξ) = (ξ − 1)

[
1

ξ4− 1
+ 1

ξ5− 1
− 3

ξ6− 1
− 3

ξ7− 1

]
≈ −1

2

C2(ξ) = −30(ξ − 1)

[
1

ξ4− 1
+ 1

ξ5− 1

]
≈ −13

C3(ξ) = −125

3
.

The numerical values are the limits whenξ→ 1.
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