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Numerical energy conservation in Fokker—Planck problems requires the energy
moment of the Fokker—Planck equation to cancel exactly. However, standard dis-
cretization techniques not only do not observe this requirement (thus precluding exact
energy conservation), but they also demand very refined meshes to keep the energy
error under control. In this paper, a new difference scheme for multidimensional
Fokker—Planck problems that improves the numerical cancellation of the energy mo-
mentis proposed. Crucial to this new development is the reformulation of the friction
term in the Fokker—Planck collision operator using Maxwell stress tensor formalism.
As a result, the Fokker—Planck collision operator takes the form of a double diver-
gence operating on a tensor, which is suitable for particle and energy conservative
differencing. Numerical results show that the new discretization scheme improves
the cancellation of the energy moment integral over standard approaches by at least
an order of magnitude. © 2000 Academic Press

Key Words:plasma simulation; conservative discretization; energy-conservative
Fokker—Planck.

1. INTRODUCTION

Plasma modeling in fusion devices generally falls into one of two categories: either tl
plasma can be regarded as being in local thermal equilibrium (LTE), and a fluid treatme
is adequate; or the fluid treatment must be abandoned, either because the collision m
free-path is comparable to the dimension of the system (giving large Knudsen numbers
due to sources and/or sinks in velocity space that do not allow LTE to occur. The latteris t
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CONSERVATIVE DIFFERENCE SCHEME 619

case, for instance, in mirror devices, where the loss cones (sinks) preclude the plasma f
achieving thermal equilibrium, and in inertial electrostatic confinement fusion systen
where an ion source causes a hon-Maxwellian plasma.

The analysis of non-local-thermal-equilibrium (NLTE) plasmas requires a kinetic trea
ment, whose accuracy and reliability depends on an adequate description of the collisi
occurring in the system. In fusion plasmas, where small-angle Coulomb scattering is
dominant due to a high mean particle energy, this description is provided by the Fokke
Planck collision term. The Fokker—Planck collision operator presents important intrins
symmetries (such as the preservation of particles, momentum, and energy), and observe
H-theorem, which states that the entropy of the system will increase in time, and the L
solution—if such equilibrium is allowed—is the Maxwell-Boltzmann distribution (thus
reverting to a fluid description in the LTE limit).

However, these properties may not hold in the numerical representation of the Fokk
Planck collision operator. Chang and Cooper showed [1] that exact particle conservat
can be achieved numerically in problems with any geometry and dimensionality by a st
able discretization of the Fokker—Planck collision operator. In the same reference, tt
proposed an interpolation technique—effective only in spherical geometry—that preser
the positivity of the solution and favors the convergence to the LTE limit. Energy conse
vation in one-dimensional Fokker—Planck problems was first addressed by Epperlein |
He showed that numerical energy conservation is conceptually and practically possible
one-dimensional Fokker—Planck problems for any time step, provided that the energy r
ment of the Fokker—Planck collision operator cancels numerically. However, generalizi
Epperlein’s energy-conservative method for multiple dimensions in velocity space is nc
trivial because the implicit time integration requires inverting a dense, non-symmetr
Jacobian matrix.

Two steps are identified in the implementation of an implicit energy-conservative solv
for the multidimensional Fokker—Planck equation, namely, (1) develop a suitable differen
scheme to ensure the numerical cancellation of the energy moment of the Fokker—Pla
collision operator, and (2) deal efficiently with the dense, non-symmetric algebraic proble
that results from such formulation, with minimal storage and run-time requirements. Tl
latter requirement has been successfully accomplished by the authors in Ref. [3], us
multigrid-preconditioned Jacobian-free Newton—Krylov iterative methods. It is the obje
tive of this paper to address the former for multidimensional geometries.

The paper is organized as follows. Section 2 deals with the theoretical background
taining to the Fokker—Planck collision operator. The particle and energy conservative d
cretization method is derived in Section 3. The scaling of the energy error is discuss
in Section 4. Section 5 presents some results to illustrate the performance and limitati
of the new discretization technique vs the standard second-order particle-conservative
cretization of the Fokker—Planck collision operator.

2. THEORETICAL ISSUES OF ENERGY CONSERVATION
IN THE FOKKER-PLANCK COLLISION OPERATOR

The general form of the Boltzmann transport equation for a specieads

a f, afy, Fo 0f,
. — = Log(fy, T
9t +Vv ar + m, v % aﬁ( o> ﬁ)v
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where f, is the distribution function of the speciesF, is the forcem, is the massl. .4
represents the effects of the speg@eam the species via collisions, and the sum is over all
the species present in the system. In this equation (and in what follbissg)me,r is the
position vector, and is the velocity vector. For a single species system in which Coulomt
collisions are dominant, the collision term in the transport equation will be given by th
Fokker—Planck collision operator, which in the Rosenbluth form [4] reads

9 aH(f,) 19 (azc‘(fa)]c )} )

Lowt = _Fa_ . fai — A5a
v v 20V ovov

Herel, :4ne§k/m§, wherex is the Coulomb logarithm, angl,, m, are the charge and
mass of the species As is clear from Eq. (1)l.., Operates only in velocity space. Hence,
for the purpose of studying the energy conservation issues of the Fokker—Planck collis
operator, the convection and field transport terms present in the most general form of
Boltzmann transport equation can be ignored (equivalent to assuming that the plasm
field-free and spatially homogeneous). This results in the following simplified Fokker
Planck equation,

ov 29v

of d oH(f) 19 92G(f) d

—=L(f)=-T—.|f fl|l=——"-Jkp, 2

ot = -V v [ ( avav VARGANENC)
where the species subscript has been dropped for simplicity. In Eqe£2f the Fokker—
Planck flux, defined as

C209v Vv

AH(f) 19 BZG(f)f
e on (1))

Jszr[f

which is formed by a friction term (proportional o) and a diffusion term (proportional to
af/ov). The friction and diffusion coefficients are expressed in termid 6f) andG(f),
respectively, defined by

V2H = —8rf 3)
V2G = H. 4)

These are called tHeosenbluth potentia[d], due to the obvious similarity with electrostatic
potential theory.

Equation (2) can be shown [5] to satisfy important intrinsic symmetries such as particl
momentum, and energy conservation, and preservation of the positivity of the solution.
also satisfies the H-theorem, which implies that the Maxwell-Boltzmann distribution is tt
solution in equilibrium. The preservation of these symmetries in the numerical approxim
tion to the problem is essential to adequately simulate the physics. Particle conservatio
straightforward to prove by virtue of Gauss’ theorem,

aN af 3
— = dv— = — dv— - Jgp = — dS- Jegp =0 5
at /Qw at /Q% v ffmx FP )

provided thatf, G, andH are regular at infinity. In this equatiof,, represents the infinite
velocity domain, and 2, is the boundary of that domain at infinity. The conservative
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discretization of the Fokker—Planck collision operator [1] results in a local particle balan
at every node, thus ensuring particle conservation numerically with the proper bound:
conditions. However, energy conservation is considerably more involved. It requires a glol
balance in an infinite velocity domain,

0E v 29f
E:/Qx = /dv—L(f)— / dv—— Jp(f)=0.  (6)

Energy conservation cannot be shown from Egs. (2) and (6) directly unless the Rosenb
potentials are expressed as Poisson integrals (leading to the Landau formalism [5]). Ca
lating these integrals is computationally much more expensive than inverting the laplac
operators in 2D. In fact, iN is thetotal number of mesh points (equal to the total number
of unknowns), calculating the Rosenbluth’s potentials from the Poisson integral in a Z
velocity space would requir®(N?) operations Q(N) operations per integral per mesh
point), whereas solving Poisson’s equation numerically would reqDifd®/?) with the
optimized successive over-relaxation method, and far less if preconditioned Krylov iterati
techniques are employed [6]. Therefore, the Fokker—Planck equation has to be re-cas
that energy conservation can be demonstrated from the more efficient laplacian formulat
of the Rosenbluth potentials. This will be accomplished here by using an analogy of t
Maxwell stress tensor formalism in electromagnetic theory.

2.1. Reformulation of the Fokker—Planck Equation

The electrostatic analogy introduced by Rosenbluth suggestsitibanh be regarded as
a potential g H /v as the corresponding electric field, anfl &s the charge density. Then,
we can write

aH 10 [aHAH 1 /aH)\? 3 =
f=___ - - | — :——-TH,H, 7
ov 8m v [8v ov 2(8v)] Y [ ] 0

wherel is the identity dyadic, andT[H, H] is formally equivalent to the Maxwell stress
tensor [7]. This tensor is a symmetric, bilinear operator. Using it, Eq. (2) transforms into

af 9 9 192G(f) } ®)

ot v [T[H I+ 5 ovev
Note thatf no longer appears in the friction term of the Fokker—Planck equation, whic
is represented now by the divergence of the teffs{cbi, H]. This new formulation of the
Fokker—Planck collision operator, developed to demonstrate energy conservation within
Rosenbluth potentials formalism, is subsequently referred to aemiser Fokker—Planck
formalism.

2.2. Energy Conservation in the Tensor Fokker—Planck Formalism

The rate of change of energy in an ensemble of particles distributed accordirig &m
infinite velocity domairQ, is given by

oE v2 of
— = dv—— 9
ot ]Qm 2 ot ©)
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which, after introducing Eq. (8) and integrating by parts once, reads as

1= v2 9
— == dv—— - Jpp = dvv-J
at /Qm 20v " Joo kP

B P 1 9 [8%G(f)
__F{/devv'e)\/'T[H’H]+2/S2deV'[ f}} (20)

av avov

In what follows, the proportionality constantis set to one for simplicity. The boundary

integrals, which are zero at infinity, are omitted here. The second integral in Eq. (10)
integrated again by parts to find, according to the definitionid aindG

3 [3%°G(f 1
/ dvv~~{ ( )f} =_/ dvafG(f)zf/ dvH V2ZH
o v | avav Q0 87 Ja,

11)
At this point, the bilinear, symmetric operat@[H, H] is defined as
HVZH 1 | 9% (H? aH\?
HH =——=—|—>|5]- (5 12
QMH. HI 167 1671[8v2<2> <av>] (12)
leading to the following expression for the energy rate of change:
oE 3 =
— = -— -T[H,H H,H]| = 1
The rate of change of energy cancels because
d = 1 dH\?
-— -T[H,H] = — — 14
foawveg Tnm= e [ o(5) 2
1 IH\?
H, H — . 1
[ avarr =~z [ av(57) 15)

The previous result has been obtained for an infinite velocity domfain but it also
holds for finite domain$2, limited by a surface boundaff2, provided thatf is absolutely
contained inQ. This is proven next. For a finite domain, the integrations in Egs. (14) an
(15) yield

/dvvaiT[H Gw/ (8\/) +$]{ ds
R
/va[H H] = 1; dv(av) }{ ds. (17)

and the corresponding energy rate of change reads

R I T T

12
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Using Gauss'’ integral theorem, the integtalis transformed to a volume integral over
the volume in velocity space external @(represented bf.y), also limited bya2 and
extending to infinity (i.e.2 U Qext= Q2o0). Then, Eq. (18) transforms into

oE 1 /aH\?2 oH aH H
— ds. Zv| — dv— - [ — (v - — + — ). 19
I

I2

Note that the sign in the integrél has changed becaud8 = —dS.y.. As f is zero outside
Q, H is harmonic inQey;, andl, simplifies to

| —/ dvi w Vv EJ’_E _/ dv § ot 2+ﬁ 3%H v
2T Qe OV LOV v - 2) Ja. |2\ v v Vv
1 1 /9H
= — d JR— d - - .
2 Qext v [V< ) ] % 2 < )

Therefore
E 1 /dH\? 1 /9H\?
—aj{ dS. —v| — —}4 dsS. v — | =0. (20)
30 2 \ dv 20 2 \ av

Hence, the energy moment also cancels in finite domains provided tiaabsolutely
confined in them. The importance of this result stems from the fact that only finite domai
can be considered in numerical problems. However, exact numerical cancellation will r
occur due to numerical errors in the boundary integrals above. This is in fact the weakn
of any energy-conservative discretization technique in Fokker—Planck problems. A detai
analysis of the errors in this cancellation is presented in Section 4.

3. DISCRETIZATION OF THE FOKKER—-PLANCK COLLISION OPERATOR

The simplified transport equation in Eq. (2) represents the time evolution of an ensem
of particles in velocity space. Then, in the numerical description of the problem, two distin
steps are identified, namely, the discretization in time and the discretization in velocity spa
Both steps are crucial for the adequate preservation of particles and energy—as well as
accuracy and consistency of the numerical solution. In this paper we deal mainly with t
velocity space aspect of the problem. The details of the time integration of the non-line
equation, and the solution algorithm used on the resulting linear system, are describe
detail in Ref. [3].

For the energy-conservative time discretization to hold when the Fokker—Planck collisi
operatorL ( ) is discretized in velocity space, the identity

9E v2 of a =
= dv—— =T dv|v- — -T[H, H H,H]| =0 21
ot /QOO Vo /Qm V{V v [H,H] + Q[ ] (21)

must be satisfied numerically. The next sections describe a systematic way of desigr
a discretization technique that accomplishes this goal. The process, which follows |
integration order followed in obtaining Eq. (13) (reproduced in Eq. (21)), renders, as
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FIG. 1. Diagram of the local cylindrical velocity coordinate system ¢,) considered in this work. Cylin-
drical symmetry is assumed. The spherical radius veci®included for reference.

by-product, the required numerical representation of the subordinate probleitssiod
G, which will be somewhat different from the traditional treatment.

3.1. Definition of the Computational Velocity Domain

Sofar, the discussion has been independent of a particular geometry and/or dimension:
in velocity space. To focus the discussion that follows, a 2D cylindrical velocity space wit
angular symmetry is adopted. This space is spanned,by{), whereu; is the cylindrical
z-axis, and, is the cylindricar -axis (Fig. 1), andy € [0, vimit]; vp € [0, vimit]. HEre, vimi
is typically set to several times the characteristics velocity of the prohlgm,

The domain is discretized with an integer mesh and a half mesh (Fig. 2)inTeger
mesh is defined usinly; (+1) nodes in they, axis, andNp(+1) nodes in the, axis, with
the constraints

Ur1 = 0, Ur,N, = Vlimit

Up,1 = 0, Up,N, = Vlimit-

Each velocity node is characterized by a p@iri, vp,j), with i=1,..., N, (+1), and

j =1,..., Np(+1). The additionali(= N; 4+ 1, j) and(i, j = N, + 1) nodes at the bound-
aries will serve a double purpose: (1) they will be used to impose the far-field bounda
conditions for the Rosenbluth potentials, and (2) they will allow an accurate determin
tion of the friction and diffusion coefficients of the Fokker—Planck collision operator at th

Vp

A

o (i,j*1e 0
%01+2)
ST S S o L P vp
i1, §) (i) (i+1,])

% (i)
o (.jNé 0

FIG. 2. Diagram of the 9-point stencil in velocity space employed in the discretization of the Fokker—Planc
collision operator.
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outer boundaries. These coefficients are defined as first and second order derivatives o
Rosenbluth potentials, and hence require at least two neighboring nodes to be estim
accurately. This will turn out to be essential, because errors at the boundaries will ultimat
lead to errors in the conservation of energy.

In addition to the integer mesh half mesh is introduced (Fig. 2) to assist in the devel-
opment of an energy-conservative discretization, defined as

Uis: = L;v” i=1....N (22)
Up,j+1 1+ Vp,j ;
vpiay = =1 Ny, (23)

The velocity increments in the integer and half mesh (which will be non-uniform ir
general) are obtained as

Avri =1 = Vit i=1...,N (24)
Avpj =vpjy3 —vpj3i J=1....Np (25)
A iyt = Vrig1 = Uri i=1....N (26)
Avpiri=vpjra—vpjs  J=1....Np (27)

Finally, it will be useful to define an additional mesh in the perpendicular direction,

o _ Uity tVpi-g

Upj = 2 ’

1=0]=2...,Np (28)
andvy ; = 0. Note that, for a uniform meshy, ; = vp ;.

3.2. Boundary Conditions in Velocity Space

The computational domain defined in the previous section is limited by four distine
boundaries, namely, =0, v, =0 (inner boundaries), andr = viimit, vp = vimit (Outer
boundaries). The system is assumed symmetric with respect to both inner boundar
hence

B
avp vp=0
I
Avr |, —o

Regarding the outer boundaries, the conditions are different for the main Fokker—Plar
problem (f) and the two subordinate Poisson probletids G). These are described next.

3.2.1. Boundary conditions for the Rosenbluth potentialhe approximate numerical
cancellation of the boundary integrals in Eq. (20) requires kth&ndG, by consistency)
be determined in the finite domafl and at the boundargs if they actually extended to
infinity. This is accomplished by integrating the Rosenbluth potentials with the so-calle
far-field boundary conditionf], obtained by calculatingd andG at the nodes of the outer
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boundaries from the integral definition of the Rosenbluth potentials, based on the Gree
function formalism for an infinite domain:

Hv) =2 dv’ fv) ; G(v) = / dv' f (V)lv —V|. (29)
Qo

Q. V=V

For the particular case of a cylindrical coordinate system, these integrals can be expan
in terms of complete elliptic integrals of the first kid(k) and second kindk (k) as

Ulimit Vlimit f(, v )KI[k(v, vg; v/, V.
H(Ur,vp)=8/ U/pdv’p/ dvr, (r p) [ (vr P> “r p)]
0 0 V@ + )% + (o — )2

Vlimit Vlimit
G(vr, vp) = 4/ Up dv/p/ duy f (vr, vp) E[K(vr, vp; vp, vp)]
0 0

x \/(vp + v+ (o — )2,

wherek(vr, vp; vy, vp) = dvpvp /4 /(Vp + 1/p)2 + (ur — v})?. The functionsK (k) and E (k)

are calculated numerically with'well-known polynomial approximations [8]. Note that the
computational complexity associated with the calculation of the far-field boundary col
ditions is O(N®/?) (the computational complexity of the integrals@gN), and there are
O(+/N) boundary points).

3.2.2. Boundary conditions for the Fokker—Planck equatiofhe boundary conditions
at the outer boundaries in the Fokker—Planck problem are selected so that particles
conserved exactly. This issue is discussed further in the next section.

3.3. Particle-Conservative Discretization of the Fokker—Planck Collision Operator

The first step in finding the discrete Fokker—Planck collision operatof( fi m), from
L(f)=—(3/0v) - Jgp is to discretize the divergence operator conservatively. Hegeis
the Fokker—Planck flux, given by

9 [= 192G(f)
Jp=-T— . |T[H,H] + =
FP v [H, ]+2 VoV

(30)

In a cylindrical space with angular symmetdyp = Rup + Zu, (whereup, =v,/v, is the
unit vector in thev,-direction, andi, = v, /v; is the unit vector in the; -direction). Then,
the divergence operator operating s reads

d 19 0Z

— Jpp= ——(WpR + —. 31

ov FP Vp avp(vp )+ dvr (31)
However, to avoid the singularity at, =0, the integral form of the divergence operator
will be used instead to discretize the divergence of the Fokker—Planck flux,

0
/ dv— - Jep = ds. Jep, (32)
AQ, OV o

wheredS is a vector normal to the surface and pointing outwards from the volume, ar
AQ; ; is the cylindrical control volume associated with a velocity nodg ) (Fig. 3).
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Avp
o

Discretization control volume Physical volume

FIG.3. Correspondence between the discretization control volume and the physical volume in velocity spa
This is useful to define the volume elememt<y ;) and the surface element8§.1,2j, AS j11/2), presentin the
discretized equations.

Assuming this volume is sufficiently small, Eq. (32) can be approximated by the followin
particle flux balance,

ad

A8 [av 'JFP]. = ASiZ0 —AS g2y
1]

+A8 1R —AS 1R (33)

where theA S's are the areas of the boundaries of the volume elemént;. Hence

0
—Aij(f) = L?\/ 'JFP}
(]
_ AS444i41 T S48 N AS iR —AS 1R (34)
AQj AQj ’

The appropriate expressions fmﬁi%ﬁj, AS jit andA; ; will depend on the location
of the node (, j) in the mesh. In addition, the particle-conservative boundary condition
must be enforced at the boundaries, which will result in one of the components of the fl
being zero. Details are given in Appendix A.

3.4. Energy-Conservative Discretization of the Fokker—Planck Collision Operator

The discretization in Eqg. (34) will be the starting point for the development of the
energy-conservative discretization scheme. Such development will consist in tailoring |
discretization of the flux component®, ;.1 and Z;.1 ; (not uniquely defined at this
point) adequately, by following the path indicated by the theoretical proof presented
Subsection 2.2.

3.4.1. Numerical integration by parts of the energy momeBefore attempting the
discretization of the flux components, it is essential to show that the discretized Fokke
Planck operator satisfies a numerical equivalent of the following integration by parts (ov
which rests the theoretical proof of energy conservation, as shown in Eq. (10)):

/dvv—Zi J ——/dvv J (35)
2 gy VPP Fp-
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Discretizing the energy moment integral as the particle moment integral (Egs. (32) a
(33)), we find

2
v
dav——-J
/ 29 FP
v.24 0
~Y AQ | .3
izj: 0] 2 |:3V FP:|

—ZAQ _, ASJr N |+ N AS%,;ZF;,; AST]+1R|J+2 AS,J;%R,F;
b AQi AQi

(N

v. .
=2 5 (8843 8832 + 88 1Ry — AS R ]
i
Factoring out theAS R and (AS 2) terms (called “telescoping” the sum), results in

ZAQH -Jrp
V I,j
2 2 2
Viij —VUij+1 Viij = Vit
=Z [AS,J'+§F§,1+%2+AS+ SEATE! T

In general, this procedure fails at the boundaries, because the boundary terms cannc
“paired.” However, the flux components at the boundaries are identically zero—as requir
by particle conservation—and the expression above is exact.

According to Egs. (22), (23), (26), and (27), we can write

2 2

2 2 _ .2 2 4 Y .

V) V1 =V — Va1 = (Wpj +Upj+) (Wpj — Vp 1) =20 1AV, 1 (36)
_ .2

Vi,j = Vigrj = Ur

v — v = (i + vric) (Vi — vrig1) = =20 1AV (37)
This transformation states that the differentiab®fdv? = 2v dv) is numerically exact in a
second order accurate discretization. This is in fact the key to the success in the numer
integration by parts, since

ZAQIJ |: av JFP]l,j
= _Z [AUD,H-%AS,H- ( PJ+2R1 i+3 )+Avr|+1AS+ (er—lZ )]
= _Z [AQLH%(Up,H%Ri, ) + AQ; (Ur|+1zl+2 J)] (38)

which is a numerical approximation ef [ dvv - Jep, as desired. In Eq. (38), the volume
elementsA < are given by

AQI JJr1 = 27'L'Up]+1Ava+1AUr|

A = 2nvp,jAvp,jAv,.i+%.

I+J
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According to Eq. (30), the flux componersj+1/» andZ;.1,» j will have two different
contributions, namely, the contribution from the friction term (givern(&sov) - 'F[H, H],
that will henceforth be called the “T-term”) and the contribution from the diffusion tern
(given by(3/dv) - [(32G(f)/avav) f], and henceforth called the “G-term”). Thus,

R=Ry+R
Z=24+2.

Each contribution is studied separately.

3.4.2. Discretization of the diffusion term of the Fokker—Planck flux (“G-termfi
cylindrical coordinates, the G-term reads

9 [9%G(f)
v { avav ] Rallp + ZqU (39)
1 9 9°G 9 392G 1/13G
R= L (48 ()4 L[S ) L(LI8 )y
vp dvp va dur \ dvr dvp vp \ Vp dvp
19 3°G d [(9°G
vp dup dvr dvp dvr \ 0vf

The Ry andZ4 components must be discretized so that the following integral (Eq. (11)) |
reproduced numerically:

1 9 [82G(f) 1
2/dvv~av~{ PV f}_—z/dfo. (42)
The integral in the left hand side is discretized as indicated in Eq. (38), but substitutil

Ri.j+12 andZi11/2j by Ryi j+1/2 andZgi11/2 j, respectively. The componen® and Zg
are discretized as

(GTP f)i+%,i+% - (GFP f)i—%,j—&-% + (UpGppf)i,Hl - (UpGppf)i,j

hiEy T Ay Up j+1Avp 41
Rl R2
3 (Gp fAvp/vpij+1+ (GpfAvp/v])i
2vp’j+%Avp,j+%
R3
Zgay; = WpGrp it j41 — WpGrp Pligyj1 n (Grr Bitrj — (Grr F)ij .
Up.j Avp,j Avpigs
71 22

Of particular interest is the discretization chosen bfv,)((1/vp)(0G/0vp) f) in Ry
(term R3 in Ry j+1/2). The term inside the parentheses has been averaged between
neighboring integer nodeg j) and(i, j + 1), each weighed by the perpendicular velocity
mesh spacing, ang, ; has been used insteacgf;. This form allows the sum to telescope
to the desired result for an arbitrary mesh, at the cost of losing the second order accur
for non-uniform meshes.



630 CHACON ET AL.

The value offi11/2 j+1,2, which appears in th&®l1 andZ1 terms, is calculated via a
volume-weighed average of the values at the integer nodes:

fL - AQij fij + AQixaj fizej + AQi o1 fijar + AQis1ja1 fivrja
1£2.0%: AQi i+ AQit1j + AR j+1 + AQit1 j+1 '

Better interpolation schemes have been devised [1] for the Fokker—Planck equation
spherical geometry (namely, exponential interpolation to incorporate the exponential nat
of the distribution function). Unfortunately, the structure of the Fokker—Planck collisiol
operator in cylindrical coordinates does not allow a straightforward implementation of su
interpolation schemes, and this issue remains to be an open one. At any rate, whatt
the interpolation scheme selected fL1/2 j+1/2, it is of paramount importance that the
interpolation coefficients of the values of the distribution function at the four corners &
symmetric, to allow the adequate cancellation of the discretized integrals (see sRhs of
andZ1 terms below).
Note that the ternZ1 is singular wherv, — 0 (j = 1). This singularity is resolved by

L'hospital’s rule (in the same way as done in Egs. (58) and (59) in Appendix A), yielding

(UpGrp f)i+%,j+% — (UpGrp f)i+%,j7:le
Up,j Avp,j

13
22

AGrp )iy
- 22

j=l Avp'l
Symmetry in the ternR1 ati = 1 is imposed as follows (refer to Appendix A for details):

Grpivsjrs = Grpfliog jis

2

Avyi

N 2(G‘rp f)g,j.;.%
i=1 Avry

The suminEg. (38), specialized for the components of the G-term, is performed separat
foreachtermirRy ;. 1+ andZy, 1 ;:

e Term R1,
2
Z Avp,j+%vp,j+% [(Gfp f)i+§,j+% — (Grp f)i—%,jJr%]
1]

2
=2 Ap4%143 2 [Gro Vg = Gro iy i) =0
j i

=0

e Term R2,

> Avivg i1 1vpi1aGppijia fijr1 — vpGppij fij]
i
—Avp j
—_——~

= E Avyivp,iGppij fi,j [%,j—% - ”p,j+%]
i,

= —Z Avrj Avp jvp, Gppi,j fi,j .
i
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e Term R3,

1/G fij+1A GpijfijA
_ZAUr|va+12( PLI+L IJ+1 vpj+1 . *] vpj)
i

Vpjt1 Up,j
_ Ap. Cpii fiiAvpj (Vpi- + Vpj+d
__Z Ui * 2

0 Up,j

Up,j

= —Z Av i Avp Gpij i
Ny

e TermZ1,

D A4 [(0pGep iy s — WpGrp )iy j_i]
(]

=Y Aviaviis > [WpGrp it 11 — @pGrp iy -] =0.
i i

=0

e Term Z2,

g Vp,j AV jUri+1/2(Grri41j fitsj — Grrij fij)
ij
—Avy
—_—N—

= ZAUr,iUp,jGrri,j fi,j [Ur,p; - Ur,i+§]
i
= —Z AU,—JAvp_jvp,jGrri,j fi’j
i

These sums are exact because the boundary terms are zero at both the inner boundarie
symmetry) and the outer boundaries (becaluse0 if the distribution function is absolutely
confined in the domain). Then, the discretization of the G-term satisfies

1 a  [02G(f)
3 Jov o | St~ = D101 1R 1) + 84 11 2 )

G
=_7ZAUT'AUPJUPJ {Gpp*‘ —L 4+ Gn| i
|] I’j

V2G=H

Hi ; fi
= _ZAUTIAUPIUPJ |]2|J (43)
i

which is the numerical approximation ef% JdvfH = | dvQ[H, H], as desired. Note
that the previous result requires that

G
|:Gpp+p+Grr:| = Hi,j
i]
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be satisfied numerically. Thus, the conservative discretization of the G-term has rende
the adequate numerical formulation of tBeproblem (which, in this case, is the obvious

one; this, however, will not be the case for tHeRosenbluth potential, as will be clear
shortly).

3.4.3. Discretization of the friction term of the Fokker—Planck flux (“T-term'pefine
(3/8v) - T[H, H] = Riup + Zyu,, whereR; andZ; are expressed in cylindrical coordinates
as

- _P_Z

Rt 10HZ  HZ  19H?
2 dvp vp 2 0vp

0
—(HH
+8vr( r p)]

1[ 19H7 19HZ 1 9
Zi=—|-Z =

— — —(vpHiHp) |.
87 2 0vr 2 0vr +vp oy (vpHr p)}

These components are discretized in the following way:

Ri.j+i = % E Hgi’g;lf ':'gi,j n :gi’.j? _ % Hrz.gvl— ':'rzi,j
p.i+3 p.j+k oiel
N (HHp)i 141 — (Hr Hp)i—%,H%]
Avy
Zti+; i = i |:UTJ—J (—} HSi+1,j — Hsi»j + } Hr2i+l,J - Hr2i,j)
2 8m [vp,j 2 Avr,i+% 2 Avr,”%

N (pHrHpiy1 41— (UpHer)i+%,j—§]
Up,j Avp,j

Note that a non-physical correction factof, ; /vp j, has been introduced 11,2 j to
allow the sum to telescope to the desired result for an arbitrary mesh. It is relevant only 1

non-uniform meshes. Introducir; j;+1/2 and Zii 1,2 j into Eq. (38) (instead oR j+1/2
andZi.1,2 j), we obtain

a —_

/dVV' oy T[H.HI~ D189 53 (vp a1 Rigey) + AR (s Zasy )]

i
1 1 5 2
= g ) _EAUr,iUp,jAvp,j Hpi.j + Avr,ivp,H%AquH% Hp,i,j-&-%

1]
1 2

+ EAUM Up,j Avp j Hri,j +B.Ts (44)
which is an approximate from of the theoretical result in Eq. (16). HBrEsrepresents
the boundary terms left unpaired after telescoping the sum.

3.4.4. Discretization of {H, H] for the cancellation of the energy moment within the
domain. The necessary and sufficient condition for numerical energy conservation is

U-z- 8
ZAQL] |71 [8\/ "]FP} = _Z[AQLH% (”p,i+% Ri,j+%)+AQi+%ﬁj (vr,i+§ Zi+%,j)]=0
i i i

(45)
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which, after introducing Eqs. (43) and (44), reads

1

81 &
1]

1Av 1H?2

+ Auvrjv P.i+3 " "pi.j+3

1
{_EAUT-WPJAUD,JHWJ p.i+}

+ EAUr,iUp,j AUp,j Hr2i,j] = Z Avr,iAvp,jup!j I.,]2 i
i

plus boundary terms, which are neglected at this stage. Recalling the defini@koH ]
(Eg. (12)), we can write
Hf  HVZH
2 167

= —Q[H, H]. (46)

Hence, exact numerical energy conservation requires

1 1
a7 Z [—ZAvr,ivp.jAvp,j le j HAvUp 1A le j+1
[}

1
+ 5 Aurivp  Avg H2 J} == AvrjAvpjvp;Qij[H, H]. (47)
This identity is possible iQ[H, H] is rearranged as

Q[H, H]=

HVZH 1 [a

H 1
Hr H)—H2 2—— H2—— HpH
1 =16: |3 r( rH)—H+ (Up p)+ vp p(Up pH)

which, once discretized, reads as

1 [(HH) 15— (HH) 1
Q. H] = L s = (s vy e
’ 167 Avyj Up,j i

2HI] (vp p)l i+3 (UPHp)i,j—% UT)]'

+-PlHZ .
UpJ Avp j vpj P
(UPHPH)i,H—% - (vapH)i,j_%
- Ao . (48)
Up,jAUp,j

This result renders Eq. (45) exact within the velocity domain, but fails at the boundari
due to “unpaired” boundary terms. Theoretically, these boundary terms exactly cancel e
other (Egs. (19), (20)); however, numerically, they do not. This result reflects an intrins
limitation of all numerical techniques in Fokker—Planck problems, namely, the impossibili

of considering infinite domains. Consequenglyactenergy conservation in Fokker—Planck

problems is not possible, although the error can be kept small by taking advantage of
scaling laws of the mismatch at the boundary. This issue is discussed further in the n

section.

Note that the correction factaf; ; /vy, ; has been introduced again to allow the sum to

telescope to the desired result for an arbitrary mesh. In Eq. (48&ndH,, are discretized
using centered finite differences on the integer meshkang; > andH; 1> j are calculated
as the average of the values at the neighboring integer mesh points.
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In order for Eqg. (45) to canceld must be obtained from Eq. (46) (discretized as indi-
cated in Eq. (48)), a non-linear equation that has to be solved iteratively using Newtol
method, instead of using its (simpler) linear definitisi§H = —8x f . Both problems (lin-
ear and non-linear) have in fact identical solutions in the continuum, but their numeric
solutions differ by truncation errors. The advantage of the non-linear representation is tf
as shown above, it leads to cancellation of the energy moment integral (thus imporvi
energy conservation).

This subtle digression from the traditional treatmenHofs in fact crucial in the devel-
opment of an energy-conservative method, as will be shown in the numerical evidence
sented in Section 5. The added computational expense that the non-linear problem reprs
is minimized by using the numerical solution of the linékiproblem as the initial guess for
Newton'’s algorithm. Thus, the non-linear correction is of the order of the truncation errt
of the discretization, and Newton'’s algorithm typically converges in less than five iteratior
in spite of very stringent convergence tolerandgs |, < 10~°, whereg is the vector of
residuals).

4. SCALING OF THE ENERGY ERROR

This section presentsteeuristictheoretical model to explain the scaling of the error in
the cancellation of the energy moment with,: andN, as observed in the results presented
in Section 5.

From the previous discussion, it is clear that the cancellation of the energy mome
is precluded by errors in the cancellation of boundary terms. These boundary terms
represented theoretically by the boundary integrals in Eq. (18), reproduced as

7{ ds- = (ﬁ> 7{ ds- ( +g)=o. (49)

I2

The mismatchis caused by second order truncation errors in the determination of the grad
of H and the integration procedure itself, each contribution of comparable magnituc
However, for the sake of heuristically understanding how this error behaves, only the effe
of the truncation term of the gradient will be studied. In a centered finite difference schen
the gradient of theH Rosenbluth potential is approximated by the following truncated
Taylor expansion in velocity space; ( vp),

1
2

oH _ 9H

_ ~ 50
ov av0 (50)

[ 0
Avy —
ovr

The superscript (2) means exponent for the increments, and order for the derivatives;
subscript 0 means exact value. Note that the angular coordinate does not appear bec
the problem is symmetric with respect to the rotation axis (givenioyFig. 1).

If the numerical errors in the approximationslefandl, in Eq. (49) are represented by
A and Ay, respectively, the resultant error in the energy moment integral (represented
Ag) can be expressed as

Ag = A1 — A, (51)

The discussion ahead will focus on the intedsalsincel; is theoretically equivalent to;
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(Egs. (19) and (20)), and hence expected to behave similarly. The leading term of the e
introduced inl; due to a second order approximation of the gradient reads

1 3 3 1?aH aH
Al’\’K/ dS-v —|:Avr——|—Avp—:| i .
2Q 2 oy dvp v |g ov

whereK is some proportionality constant.udfmic > vo, whereuv is the characteristic speed
in the system (usually the thermal velocity in equilibrium), then the distribution functiot
can be considered a point source, ahyd- % wherev = \/vr2+ v% . Then, the derivativesin
Eq. (52) can be calculated analytically, and the integral at the boundaries can be perforn

This has been done in Appendix B for three different cases: uniform mesh, geometric me
and a combined uniform/geometric mesh.

Note that the accuracy of the numerical representation of the distribution function in t
limit of vymit > vo Might be compromised, becauge~ e~/v)’ and actual values of
may fall out of the machine precision range. However, because the absolute values ta
by f in this region are extremely small, the effect of large round-off errors whg> vo
on the accuracy of the global solution is expected to be minimal (i.e., havind 016
instead off ~ 1025 will have very little impact on the solution in the region of interest,
where f ~1). In addition, note from Eq. (47) that the numerical cancellation of the energ
moment relies o, which scales a%, and hence can be calculated much more accurately

+0(AvY,  (52)
0

4.1. Scaling Laws forAg in a Uniform Mesh

The velocity increments in a uniform mesh are definedMay = vjmir/N; and Avy =
vimit/ Np, whereN; « N, = N, the total number of mesh points. The integral in Eqg. (52)
yields, for this case (Appendix B),

vo(Avr2 + 1.4Av,2) + 3.8Av; Avp) Vo
1~ — ~
vl:igmit

N Vjimit
where it has been assumed thiat~ Ny ~ V'N. Hence, as\,» behaves similarly, we expect

vo

Ag = Ap— Ay~ (53)

N Vlimit
This resultindicates that, for a uniform mesh, the error in the energy rate of change decre:
as the number of mesh points increases, and decreases as the outer boundaries are [
further. Note that these aret competing trends, because the result in Eq. (53) does nc
depend on the increments themselves. In particular, the energy error will decrease €
whenuvjimit is increased anill is left constant, even though the mesh gets coarser. Of cours
this is true as long aav, andAv, remain sufficiently small to prevent higher order terms
[O(Av*)] becoming significant.

4.2. Scaling Laws forAg in a Geometric Mesh
A geometric velocity mesh, characterized by a geometric gatis defined by

Avg = EAvcg = EXTAY,

k skfl
vk = Z Avp = 1Av1,
n=1 %- -
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wherek=2, ..., N, for v,, andk=2, ..., N, for v,. The error in the boundary integral
yields (Appendix B)
vo(& — 1)2
Ay~ —c(e) 2D (54)
Vlimit

whereC(£) is a slowly varying function of: C(¢ — 1) ~5, C(¢§ =2) ~2.23. SinceA; is
expected to behave identically, the error in the energy rate of change scales as
vo( — 1?2 €?vg

Ag ~ = ,
Vlimit Vlimit

wheree =& — 1. Note that this expression does not hold ée£ O (uniform mesh limit),
due to the approximations made in the integration procedure in Appendix B (where it
assumed thatdN > 1, or, equivalentlye > 1/+/N).

Note that most geometric ratios in a reasonably fine mesh will not go beyenti1.
Henceg* =1 +e)*~ 1+ Xxe+ X(XT_DEZ, and, according to the definition of the geometric

mesh, we can write

fm -1 /Ne
Vimt = ——— Ay~ | 1+

limit 5 _1 1 2
whereAv; is the first velocity increment in the geometric mesh, chosen so that the mesh pi
vides enough resolution in the region where the bulk of the distribution function is locate
In actual simulations, this usually resultsvfiN Av; ~ 5vg (Whereuy is the characteristic
speed in the system), and hence

2 {Ulimit B 1]
VN | 5vo '

This result is compatible with < 1 only if vimit/5v0 < ~/N, which is typically the case
(for instance, in a 3% 32 meshyjimir would have to be- 160v, to violate this condition).
Hence, in regards te, two situations are possible:

>\/NA01,

e ¢~1/+V/N « 1. Thisis the case wheaR,; is only a few times larger tharvg. The
error in the energy rate of change scales as

U0

Ag ~ ,
N vjimit
i.e., it decreases with bothmi; andN. Note that this scaling is consistent with the uniform
mesh scaling; hence, it can be expected to apply alsofor & 1/+/N.
e € ~vjimit/~/Nvg < 1. This is the case whanmit > 5vo, and the energy error scales
as
Vlimit

Ag ~ .
E Nvo

The favorable scaling with the velocity domain limit is lost, as the energy error increas
with vimit. Larger values of are not of interest, because accuracy would be lost, and highe
order terms in Eq. (52) would become significant, thus breaking the scaling.
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4.3. Scaling ofAg in Combined Uniform-Geometric Meshes
The optimal choice will come from combining the two previous cases so that:

1. Enough resolution, with a well-known accuracy in the numerical method, is prc
vided in the domain region where the distribution function is localized.

2. Largev;mits are possible without requiring a large number of mesh pdihts

3. The energy error decreases with both increasing domain limits and increasing
curacy.

4. The influence in the numerical solution of the non-physical correction fagtof
vp,j, introduced in the discretization to allow the exact numerical cancellation of the ener
moment, is minimized.

Optimization will be achieved by constructing a mesh that discretizes the velocity dome
in the following way:

e The important physics in the problem will occur in the domain region limited by
vr, vp € (0, Svg), whereuy is the characteristic velocity in the problem, typically defined as
the thermal velocity in equilibrium. Hence, to provide accuracy and resolution, this regic
will be discretized with ainiform mesh

e Therestofthe domain up to the outer boundaries will be discretized \wabmetric
meshwith initial velocity increment equal to the increment of the uniform mesh, to ensur
a smooth transition between both meshes.

e Theincrements of the lasttwo nodes in both velocity axes are set equal to the unifo
velocity increment, in an attempt to improve the scaling of the energy error by increasil
the accuracy at the outer boundaries.

The number of mesh points in the uniform and the geometric portions of the domain
comparable (for instance, in%a(% or %/% proportion). A sketch of the discretization of the
velocity domain that results is depicted in Fig. 4.

Geometric

Ve

| | ]
I . I . 1
Uniform Geometric

FIG. 4. Sketch of a combined uniform-geometric discretization mesh. Note the additional accuracy provid
at the outer boundaries.
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The error of the boundary integral in this combined domain is also obtained in Appendix |
and yields

A vy | 1 5( 5o ) 5( 5o )2 (55)
Y ome| 2 2 e/ Nvjimit 3\ ev/Nvjmit/ |

This result applies foe > 1/+/N <« 1. The result in Eq. (55) presents an expansion of the
error in terms of the parameteo®e+/Nujmir, Which behaves as

1 5 5
€ ~ —— (Viimit > Svg) = Y0 ~ 2o <1

\/N E\/NUIimit Vlimit

2

Vlimit vo Svg

€ ~ ——— (Viimit > Svo) = ~( ) <1
v Nug mt e~/ Nvjimit Vlimit

using thee scaling results of the previous subsection. These relations are revealing 1
understanding the scaling of the error of the energy moment inteygak: A1 — As:

e ¢~1/v/N « 1. In principle, the first term in the expansion dominates, and hence
the error in the energy rate of change scales as

A 621)0 Vo
e~ .
Uimit  Niimit

However, sinceAg = A; — Ay, andA; andA; originate from different forms of the same
integral, they are expected to behave similarly to first order, and the leading terms in 1
expansion may cancel to some degree. This, together with the fact that the coefficient
the leading term in the expansion is already small vs that of the first order term, sugge
that the latter may actually dominate the scaling\@fin some cases. Thus, in some cases
it may occur that

A €vl 1( Vo )
EY —F/7——— ™~ — - .
VNuvZ N\ viimit

Some numerical evidence of this quadratic scaling is presented in Section 5. Hence,

Vo 1( Vo >2
Nvjimic” N\ viimit '

Note that, at any rate, the uniform mesh scaling has to be recoveredewheh(uniform
mesh limit).
o e~ vimit/v/Nvg < 1. In this case, the energy error may scale as

AE’\'

AEN|:UIimit vo }

Nvo~ Nvjimit

depending on the degree of cancellation of the leading termg ehd A .
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TABLE |
Scaling Laws of Ag in Terms of vjimit and N as a Function
of e=¢ — 1 (whereg Is the Geometric Ratio), for uniform,
Geometric, and Combined Meshes

i ~ L ~ Vlimit
Scaling ofAg e~ k1 e~ mL 1

Uniform mesh . Y0
Vlimit

Geometric mesh N 10 Ylimit

Plimit Nuvg

Combined mesh ‘0 0 Yimit Y0
Nujimit * Nv2 Nvg * Nejimit

limit

4.4. Summary of the Scaling Laws At for Different Meshes

Table | summarizes the scaling laws af obtained in the previous paragraphs, for
the three different meshes considered, namely, uniform, geometric, and combined me
This table confirms that the combined mesh is the optimal choice, since it provid
scalings as good as those of the uniform mesh ¢ferl/+/N « 1), and is much more
flexible. However, it should be borne in mind that the truncation error of the discretiz:
tion of the Fokker—Planck equation is only first order accurate in the geometric (no
uniform) subdomain (centered finite differences are second order accurate only in u
form meshes), and the accuracy of the numerical representation increasdsasases.
Hence, the final selection of the velocity domain and its discretization mesh must obse
a certain compromise between energy conservation and the accuracy of the numel
method.

5. RESULTS

The goal of this section is twofold, namely, (1) compare the performance of the energ
conservative discretization with that of standard second-order, particle-conservative
cretization techniques, and (2) show the numerical scaling fvith v;mi and N, and
compare them with the theoretical trends derived in Section 4. For this purpose, a
cylindrical velocity domain is considered, discretized with a combined uniform-geometr
mesh withy/N points per direction total) split in a%/% proportion between the uniform
and geometric regions. Two additional mesh points, spaced with the uniform grid spacil
provide extra accuracy at the outer boundaries. The uniform mesh region is limited
vr, vp €0, V/2]; the geometric mesh region is limited by Vp € [v/2, vimit]; velocities are
in units of an arbitrary reference velocity.

Two distinct test distribution functions will be considered for the numerical experiment
in order to illustrate a range of characteristic problems:

1. Aradial beam characterized by a distribution functidr(v,, vp) centered om, =
0.5 andv, = 0, with beam temperatur®, = 8.89- 102 and average energ§) = 0.138.

2. Asymmetric beancharacterized by (v, vp) = f (v), centered ow = \/v? + vzp
=0.5, with beam temperatuiig = 8.89- 102 and average energy) = 0.147.

Energies are in units af}. Both beams are localized in the uniformly discretized velocity
subdomain and are depicted in Fig. 5.
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Symmetric beam

1.2 0.13

Radial beam

30.7

FIG. 5. Test distribution functions employed in the assessment of the energy conservation properties of
discretization. These plots only cover the uniformly discretized region of the domain. Velocity units are arbitra
Some reference values of the distribution function at selected contours are indicated; contours are equally spz

5.1. Performance of the New Discretization Concept

To test the success in improving the cancellation of the energy moment of the Fokke
Planck collision operator, the erravg will be calculated and compared for three different
discretization schemes:

1. The energy-conservative discretization developed here,Witibtained from its
non-linear definition (Eq. (46)). This scheme will be identified by NLS (non-linear solver)

2. The energy-conservative discretization withobtained from its linear definion
(Eq. (3)). This scheme will be identified by LS (linear solver). This case is introduce
to address the importance of solving the non-linear problenHfdor adequate energy
conservation, instead of the more convenient linear approach.

3. Astandard particle-conservative, second order discretization of the Fokker—Plar
collision operator. This discretization is based upon the particle-conservative discretizat
in Eq. (34), but using the standard form of the Fokker—Planck flux (Eq. (2)),

Jp = f

 29v VoV

AH(f) 19 826(f)f
v 20v '
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In cylindrical coordinates, the Fokker—Planck flux componeits = Rup+ Zu, are,
specifically,

vy v2 dur  dvrdvp Jvup

aH  3°G af 3°G  af
dvp  dvZ Jup vy dup vy

All the derivatives are discretized with centered finite differences in the stencil depicted
Fig. 2. This scheme will be identified by NEC (non-energy-conservative).

Note that no time integration is involved in the calculatiomaf, which is simply the error
introduced in the numerical integration of the energy moment of the Fokker—Planck collisit
operator. The issue of the propagation of this error in time will be addressed in Ref. [
where the development of an energy conservative solver, based upon the present differ
scheme, is discussed. Suffice it to say here that, as shown in the same refaend@js
conditionsine-qua-noto construct an energy-conservative time advancing algorithm. Thi
justifies the adequacy @fg as a figure of merit to address the performance of the propose
discretization against other alternatives.

The behavior of the error in the energy momext (defined in Eq. (51)) for these three
schemes, in terms afi,i; and for different mesh refinements (represented by the numbe
of mesh pointsN =2" x 2") is given in Fig. 6. Several important comments are in ordelr
from this plot:

e Inall curves, the leftmost datapointif; = +/2) corresponds to the case when there
is no geometric mesh region, and only the uniform mesh region is considered. To pres
a fair comparison of the improvement in the cancellation of the energy momentwith
the spacing in the uniform mesh has been kept constant in all datapoints belonging t
same curve. With this in mind, the decreasing trend of the energy momentgrraiith
vimit has a clear interpretation, namely, that introducing a geometric mesh to complem
the uniform mesh region has a beneficial effect in the energy conservation properties of
NLS scheme in all scenarios, but has little or no effect in the LS and NEC schemes. Thi:
expected, as the geometric region only benefits when the cancellation of the energy mon
within the domain is ensured.

e The relative performance of the three different schemes does not depend on
number of mesh points, as evidenced by the fact that the plots #05 (Figs. 6a, 6¢)
andn=7 (Figs. 6b, 6d) are essentially identical (but for the absolute magnitude of tt
error).

e There is, however, a strong dependence on the test case (radial/symmetric) and
limit of the velocity domairvjimit. Focusing on theadial beam test cas@-igs. 6¢, 6d), both
the NLS and LS schemes clearly outperform the NEC scheme, fopgaRy by at least
an order of magnitude. Note that, while the NEC scheme yields a flat error profile wi
vimit, both the NLS and LS schemes show rapidly decreasing trends in the energy er
However, while the NLS keeps a monotonic exponentially decreasing trend, the enel
error in the LS scheme ends up saturating—and even increasing—after a eggain
threshold.

e The saturation of the error in the LS scheme, which is mild in the radial beam te
case, is deleterious for tlymmetric bearfFigs. 6a, 6b). There, both the NEC and the LS
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shemes render a flat energy error profile, and only the NLS scheme shows a decreasing t
of the energy error withy;mit, although eventually finds a minimum and starts increasing.

These trends clearly indicate two points: first, the difference scheme proposed in this pe
succeeds in canceling the energy moment within the domain, as evidenced by the decree
trend of Ag with vjinit; otherwise, the expected trend would be flat, as in the NEC schem
Second, it is essential to solve the non-linear constitutive equation fdd tResenbluth
potential in order to take full advantage of the energy-conservative properties of the diffi
ence scheme, as evidenced by the striking differences in performance between the NLS
the LS schemes.

5.2. Scaling ofAg

Although theoretical scaling laws have been derived in Section 4 for three differe
meshes, namely, uniform mesh, geometric mesh, and a combined uniform-geometric m
(the latter being the more advantageous in terms of flexibility, resolution, and scaling), or
the latter will be considered in this section, for several reasons. First, the flexibility of tf
combined mesh allows posing extreme cases, both in the number of mesh points an
velocity domain size, without compromising the numerical resolution of the distributio
function. Clearly, if pure geometric or uniform meshes were employed, the combination
small N with large velocity domains would result in a lack of resolution of the distribution
function that would obscure the scaling A (i.e., it would be difficult to assess if the
difference in the energy error were due to the scaling law or to lack of resolution). Secor
the combined mesh can always be tailored to provide a uniform mesh in the region where
distribution function is located, thus ensuring sufficient resolution. Finally, the combine
mesh exhibits the main features of both the uniform and the geometric cases; thus, tes
the understanding of the combined mesh essentially tests also the understanding of the
geometric and uniform mesh cases. For the following numerical experiments, the sa
velocity domain, discretization mesh, and test cases defined above are used.

5.2.1. Scaling ofAg with vjimit. The evolution ofAg with vymit for various mesh re-
finements is presented in Fig. 7, for both the symmetric beam (Fig. 7a) and the radial be
(Fig. 7b) cases. Note that the behavioraf in terms ofuvjimi for the radial and symmetric
beams is remarkably different: while in the radial beam case the scaling is monotonic &
clearly follows the Yvjimit prediction, the symmetric beam case is more complex, presentir

a 1.00E-03 - b 1.00E-02 -
‘k“"-\-\.‘_
- ..
1.00E-04 + s Z
S~ 1.00E-08 { ™~ _
i =
s . . A
1.00E-05 | , h..ﬂﬂ_& T - . S .
= o = 1,00E-04 - \ \‘\\
B \'\ -] T s
1.00E-06 - e N F n=6 =9 e
SN T
Y n e
1.00E-07 \\'/ ST 1.00E-05 - \ =6
L - \\/ \““*«._
-
=1
1.00E-08 1.00E-06
1 10 100 1 10 100
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limit

FIG. 7. Scaling of Ag with vy for various mesh refinements in (a) the symmetric beam test case; (b) th

radial beam test case.
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FIG. 8. Scaling of Ag with the number of mesh pointd =2" x 2" for different values ofv;,; in (a) the
symmetric beam test case; (b) the radial beam test case.

four different regions:

Viimit € (1.4, 10): ~ 1/v|imit scaling.
vimit € (10, 30): transition region.
vimit € (30, 50): ~ 1/v2 .. scaling.
Vjimit > 50~ Vjimit scaling.

The behavior of the energy errarg in both the symmetric and radial beams is essentially
consistent with the scaling analysis presented in Section 4 (see Table |) for the combir
uniform-geometric meshes. The differences in the behaviargobetween the symmetric

beam and the radial beam are probably due to differences in the magnitude of the leac
order term in the energy error: while it is large in the radial beam, dominating the scaling,
is small in the symmetric beam, thus allowing higher order terms of the scaling to surfac

5.2.2. Scaling ofAg with the number of mesh points NThe evolution ofAg with
the number of mesh pointd for various domain limits is depicted in Fig. 8, for both
the symmetric (Fig. 8a) and radial (Fig. 8b) beams. All trends follow tH¢ &caling, as
predicted in Table I.

6. CONCLUSIONS

The present work has successfully dealt with the task of developing a systematic ©
cretization method of the Fokker—Planck collision operator in multidimensional geometri
that preserves patrticles exactly, and improves energy conservation with respect to previol
available approaches. The discretization method can be applied to both uniform meshes
non-uniform meshes.

The development of such a discretization method scheme has been possible by a the
ical reformulation of the Fokker—Planck collision operator into the tensor Fokker—Planc
formalism, which yields the symmetries of the theoretical system more conveniently for tl
development of a conservative numerical representation of the problem. In fact, it has be
the numerical preservation of these theoretical symmetries that has driven the developn
of the discretization scheme.

The Fokker—Planck collision operator is non-linear in that its coefficients are integr
functions ofthe solution sought. As itis known from earlier work in 1D Fokker—Planck [2, 9]
the numerical representation of these coefficients is crucial to achieve energy conservat
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This research has shown that this is also the case in multidimensional problems. In partict
it has been found that thd Rosenbluth potential has to be obtained numerically from the
discretization of anon-linear differential problem, instead of using the simpler linear Poiss
differential formulation (Rosenbluth). Both problems are equivalent in the continuum, b
their numerical solutions differ by truncation errors.

Thisresearch has shown theoretically that the difference scheme developed herein ens
the exact numerical cancellation of the energy momeétttin the velocity domain, and that
errors in the cancellation occur at the outer boundaries. Heuristic scaling laws for this er
in terms of the number of mesh points and the velocity domain limitjmi; have been
derived and validated numerically.

Finally, it should be stressed that, although the development of an energy-conserva
discretization method is a hecessary condition to develop an energy-conservative solve
is not sufficient. Thus, this step has to be combined with the appropriate time discreti:
tion scheme to construct an energy-conservative Fokker—Planck solver. This task has t
undertaken by the authors in Ref. [3].

APPENDIX A

Particle Conservative Discretization in Velocity Space

Nine different regions are identified in the velocity domain (inner domain, four bounc
aries, and four corner points) that will render as many different forms of the volume ai
surface elements in velocity space. The specialization of Eq. (34) for each of these n
cases is discussed next.

Discretization of(d/9v) - Jep in the inner domair(i #1; j #1;i #N; j #Np). The
volume element associated to the n@dg ) in cylindrical space is a hollow cylinder with
heightAwv, ;, mean radiusy, j, and thicknesa\v, ;. Then, the corresponding volume and
surface elements for the node j) are

ASJF%,J- = AS_%,J- = 2mvp j Avpj
AS’J-JF% = vap7j+%Avr,i
AS!J-_% = Zﬂvp,j_%AUr,i

AQi | = vap,j Avp jAvyj.

Introducing these results in Eq. (34), the following discretized equation results,

—.J = 56
av Pl Up,j Avp,j + Avy (56)

{ 9 } Vgt R =R i — g

i
which is exactly the same result that would have been obtained by discretizing directly t
differential expression of the divergence in Eq. (31).

Discretization ofd/dv) - Jrp atthev, = 0boundary(i #1;i # N;; j =1). Thevolume
corresponding to this velocity node is a solid cylinder of radiusg, 1 /2 and heighiAv, ;.
Also, because the control volume corresponding to this node cannot extend further that
vp = 0 axis, the relevant component of the flux is Ryt ,» at that boundary (the node= %
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does not exist), buR, 1, which is zero for particle conservation. The volume and surface
elements corresponding to this volume are

Then, the discretized divergence operator is, for this case,

9 3 AR Zipii— i1
av T )

= 57
ij=1 Avp.l Avr| ( )

Note that the singularity presentin the differential form of the divergence operatorin Eq. (3
atvpy=0(j =1) has been resolved in Eq. (57), obtained from the integral formulation. Th
same result, however, can be obtained from the differential formulation, by realizing th
R— 0 whenv, — 0 by conservation of particles (i.e., the flux normal to the boundary i
zero), and hence

1 9 oR R oR
——(@pR = { + } =2— (58)
vp dvp w0 LOVp  Uply o dVpl, o
by L'hospital’s rule. This result is discretized at tiej = 1) node as
R s — Ry, 4R s
ORI _pRiTRa MRy (59)
avp i,j=1 Avp,l/z Avp’l

(R.1 =0 for particle conservation), which is exactly the same result as in Eg. (57). Thu
both approaches are equivalent.

Discretization of(d/dv) - Jgp at thev, =0 boundary(i =1; j #1; j # Np). The vol-
ume element in this case is a hollow cylinder with heigh ;1/2, and mean radius and
thickness given by, ; andAvp, j, respectively. As in thg =1 case, the node= % does
not exist, and particle conservation foregs; = 0. Hence, the volume and surface elements
read as

AS%J = 27Tvp,j Avp’j

Avr g
ASALJ'-F% = vap,H_%?
Avr g
Asl,j—l = 27'[va7% 5
Av
AQy | = 2mvp jAvp 2r,1

The divergence operator of the Fokker—Planck flux at this boundary reads

9 _ Upj+i R+ —vni-sRuj-y | 243
— . Jep = + . (60)
v i=1j Up,jApj Avrg
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Discretization of(9/9v) - Jrp at thev, = vimir boundary(i #1;i # Nr; j =Np). The
volume element in this case is a hollow cylinder with heighi ;, and inner radius and
thickness given byp n,-1/2 and Avp n,/2, respectively. As in previous cases, particle
conservation is imposed at the boundary by forcRg,, =0. The volume and surface
elements are

Avp N,

AS+1 Np — AS N - vap Np 2

AST,N,,% = 27Tvp,Np,% Avy

N
2 Avj.

Av
AQi«Np = 27Tvp.Np
The discretization of the divergence operator of the Fokker—Planck flux results

[ d JFP:| _ PN} Ring-1 n Zijin, — Zif%,Np. (61)
8V |j:Np "Up’NpA’Up’ND Avr,i

Discretization of §/0v) - Jep at thev, = vimir boundary(i = N;; j #1; j #Np). The
volume element associated is a hollow cylinder with height, /2, mean radius, j, and
thicknessAv,, ;. Particle conservation requirés, ; =0. The volume and relevant surface
elements are

AS\“?%’J- = 2mvp, | Avp |

Avy N,
A8\ j41 = vap’HlT
Avr N,
ASy j-§ =201
Avy N,
AQN, j = 2mvp jAvpj—F5— >
The discretized divergence operator reads as
9 pJ+2RN i+3 ~ Vpj- 1RN J—3 ZZNrf%,J
— Jrp = . (62)
8V i=N, i Up'JAUp,J Avr'Nr

Discretization of §/0v) - Jep at thev, =0, vy =0corner point(i =1, j =1). Thevol-
ume element is a solid cylinder with radins, 1 /2 and heighiAv, 1/2, with outer surfaces
and volume given by

Av 1Avr1
A = 27—
33 2 2
Av 1 ZAvrl
AQi1=m P -
w=r( S 5

The discretized equation for the divergence of the Fokker—Planck flux is

9 4R1’§ 22;1
[ JFP] = 24—, (63)
v i=1j=1 Avp1 Avr
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where the components of the flux that cross the boundaries have been set to zero to cons
particles.

Discretization 0fd/0v) - Jep atthev, =0, vy = vjimit corner point(i =1, j = Ny). The
volume element is a hollow cylinder with inner radiugy, —1/2, thicknessAvy, . /2, and
heightAv, 1/2, and outer surfaces and volume given by

AquNp
AS%,Np = 27'[vp_Np 5
Avr_l
ASl,pr% = ZNUP,NP,% T
Av Av,
AQi N, = 2Tvp N, 2ppr _2r,1

and the discretized equation for the divergence of the Fokker—Planck flux is

|:i . ‘JFP:| — _2vp’NP7% Rl’pr% + ZZ%’NP (64)
i=1j=Np

8V vp,NpAvp,Np Avr’Np

Particle conservative boundary conditions have been imposed as usual.

Discretization 0fd/9V) - Jep at thev, = vjimit, vp =0corner point(i = N;, j =1). The
volume corresponding to this velocity node is a solid cylinder of radiug1/2 and height
Avr N, /2. Hence

Avp,l 2
As‘“f‘%‘:”< 2 )

Avp1) A
A&,,;;:;h( ”2"’1> -

2
Avp,]_) Avr'Nr

AQN“J_ = JT< 2 2

The discretized divergence operator reads, after imposing the boundary conditions,

9 4Ry 3 27 _1
{ - JFP} = A (65)
aVv =N, j=1 Avp 1 AUr,N,
Discretization of(d/0v) - Jep at thev, = viimit, Vp = vimit corner point(i = Ny, j = Np).

The volume corresponding to this velocity node is a hollow cylinder of inner ragins 12,
thicknessAvy, n,/2, and heighiAv, \, /2. Hence

AQN, N, = 2TVpN,— 5 —5
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The discretized divergence yields, after imposing the boundary conditions,

[ G] } 2 n-tReN-r 248,
i=N;,Np

I, - o (66)
av vp,NpAvp,Np AULN,

APPENDIX B

Integration of Energy Error at the Boundaries

The error at the boundaries stemming from a second order discretization reads, accort
to Eq. (52),

9 9 1®aHy\ oHo
Ap ~ ds. A A — |- —— + O(Av 67
' /39 V([ vra * UpavJ v v + 0. (67)
This integral is restricted to the outer boundaries of the velocity domain considered in St
section 3.1, defined b§<2, = {vr € [0, viimit], vp = vimit} @aNAIL2, = {vp € [0, vimi], vr =
vimit}- EXpanding the term in square brackets in Eq. (67),

Av -t Ay L (A )2 +(A )282 t2nuyan | 2He
Uy — v —_— = v v v v
" vy Pov,]  av ' P P duravp | v
i) 2H 2H 92Ho
= Av)?2 Avy)?Y 2Avp Ay —— |.
{( V) —— +( Up) + UVpAvr Bvravp}

The last step can be done because angular symmetry allows, 9/0v,, andd/ov to
commute, and it is assumed that the variations of the incrementswitly are negligible
compared to the variations &fo. If vimit > vo, thenHo ~ K (vo/v) = Kvo/~/vf + v5, and

3Ho Ur
= —Kuvg—t
vy Vo3
oH
aro _ —KUO&
dvp v3
92Ho _ —Kvol — 3(vr2/v2)
v v3
0%Ho _ —Kvol —3(v5/v?)
31)% v3
82H0 — KUOSerp
dvpdur Ve

With these results, and dropping tKey, constant, we find

A )282HO+(A )23 Ho A 32Ho
v v v
92 P vp r81),81),)

_ (Av )2 + (Avp)2 3(vr Avy + vavp)2
B v3 B v°
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which, introduced in the energy error integral, yields

Ag~ / as. v[aHoi <(Av’)2 +(Avp)® 3y Avr + vavp)2>
i1

vy vy V3 Vo

dHo 8 ((Avr)z +(Avp)? 3w Ay + vavp)2> Lo,

3
dvp dvp v

vo

Carrying the derivatives through and grouping terms, the following results,

A N/ dS_V<(Avr)2+ (Avp)?  3(urAv + vavp)2>
aQ

V8 v8

L 2
Vimit (A'Ur )2 + (Avp)ip:wimn 3<vl’ Avr + Ulimit(AUp)vp:v"mn)
= 27 Vjimit durvy 5 - 5
0 v v

imi 2 2 . .
o / t dvpvﬁ<(Avr>v,:wmz+(Avp) ~ 3<vl.m.t<Avr)v,:;.imn+vavp)2>
v v

+ O(AvY.

Since the value of does not change drastically at the boundariggi(< v < vimitv/2), we
assume ~ v;imit (hence, coming out of the integral), ang simplifies to

_ (Avp)5p=vhmm + g(AUr)§r=v\imit + f()vIimit dUr Ur(AUr)2 + fv"mit dUpU%(AUD)Z

0
Al ~
vl?mit vl?mit vlfismit
(A vy=vime Jo' ™ dur v AV (AU )y =y Jom dvpv%Avp
Vlimit Vjimit

Vlimit 3 2 Vlimit 4 2

du v’ (Av dvyvt (Avp)

L C LA Ml G TN (68)
Vjimit Ylimit

where the 2 constant has been dropped for simplicity. To perform the remaining integral.
information about the details of the discretization of the velocity domain is needed. Thr

possibilities are considered at this point: uniform mesh, geometric mesh, and a combir
uniform/geometric mesh.

B.1. Uniform mesh. In a uniform mesh, the velocity increments are constant and th

integrals in Eq. (68) are rendered trivial. Recovering k) constant, the following ex-
pression results:

Kuo(Av? + 1.4Av3 + 3.8Au; Avp)

3 .
Ujimit

Ay~ —

B.2. Geometric mesh.In a geometric mesh defined by the ratigwhich will be as-
sumed equal in both andv, directions for simplicity), the velocity increments satisfy

Avej = EAv i1 =& tAu (69)
Avpj =EAvp 1 =8""Avps (70)
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and the radial and perpendicular velocities at the nodp) are given by

gh-1

vr| = ZAUrn = _ Avl’l (71)
g-1
Up,j = Z AUp,n = ngvp’l. (72)
n=1

Atthe outer boundaries= N, j = Np. Typically,N; > 1, Ny > 1. As& > 1,there™ > 1,
gNe > 1 (provided that > 1+ 1/N; andé > 1+ 1/N;), and we can write

N
EM Ay Avy N,

Vlimit ~ = T : - = Aven, = (AV )y ~ (6 — 1) Vlimit (73)
No Ay Av
Vlimit ™~ § P f’l ~ : _p”i” = Avp N, = (Avp) iy ~ (6 — Dviimit- (74)

With this information, the integrals in Eq. (68) can be calculated as follows. Take, fc
instance, the first integral, given "™ dvr v, (Avr)?, and discretize it so that

Vlimit N1 4 N— :
/ dvr v (Av)? = > wri(Av)® = (3 .0 Z(s“' £%).
0 — E3(5 —

Equations (69) and (71) have been used for the last step. Each of the two sums in the prev
result is the sum of a geometric series, with ratios give‘bgndz 3, respectively. Hence,
the sum can be performed to find

Viimit 2. (Avr,1)4 g _q B g3 _1q
[ = gty [ - 5 |

Recalling thag™ > 1, and using Eq. (69) again, the following resuilts:

vtmi 2 (Aun)® [E%Aun, ésAvr.l}
/0 ot (&) “’53(5—1){ -1 g1l

Neglecting the second term in the right hand side,(; < Awv v, ), and using Eq. (73), the
integral finally yields

Vlimit 4 - _ 1 3
[t~ B

All the integrals in Eq. (68) can be calculated in a similar way, yielding
Vlimit 5 (%- _ 1)3
d 20A 2 Viimit
o s~

Vlimit 4 — 12
/ durv? Ay, ~ 711'""“‘(‘5 )
0 §4-1

Viimit VI (& — 1)2
|
/o dvpngvp ~ Imgsi_l
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Ulimit 6 —1)3
/ d, v?(Avr)z _ Vimit € — 1)
0

£-1
Vlimit 7 3
4 2 Uimit@ — D
/o dvpvy(Avp) ~7'mé7_1 .

Introducing all these integrals in Eq. (68), together with Egs. (73) and (74), it follows tha

vol& — D2 [5 5 5 3 )
A T [3+(‘§_1)<s4—1+55—1+56—1+s7—1)}

B.3. Combined uniform/geometric meshn an attempt to provide sufficient accuracy
where it is needed (namely, the region where the bulk &), the velocity domain may be
discretized uniformly there, and with a geometric mesh elsewhere. Also, the outer bour
aries may be discretized with a finer mesh to decrease the energy error introduced at
boundary and to improve its scaling.

Since the uniform region is typically very small compared to the whole domain (the mo
important physics will occur fop < Svg, anduvjimit/vo >> 1), its contribution toA; at the
boundaries can be neglected. The rest of the outer boundaries is in fact discretized wif
geometric mesh, and most of the development in the previous section applies.

Onthe contrary, a finer discretization at the outer boundaries will indeed have a noticea
effect. This is done by decreasing the velocity increment associated with the last node:
bothv, andv,, directions; typically, this increment will be set equal to the increment of the
uniform mesh A vy, ~ 5vo/+/N. Hence,(Avp) s, —yme = (A )y, e = Avun. Introducing
these increments in Eq. (68), together with the integrals performed for the geometric me
it follows that, for the combined mesh,

—1)?
A~ EZ D0 [cl(s) b Coe)—— 0

2
vo
I (] B m— I
& — DNy |2 ((é - 1)¢anmn> ]

Vlimit

where the coefficients are given by

Ci(§) = ) ! > >~
16) = (§ - ){54_1-’_55_1_55—1_57—1}N_Z
Cae) = —30(6 — 1)| |~ 13
2@)——0@—){@_1%5_1}’”‘

125
CS@):_T'

The numerical values are the limits whep> 1.
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